Question

Let $${z_1} = a + ib,{z_2} = p + iq$$     be two unimodular complex numbers such that $$\operatorname{Im} \left( {{z_1}{{\overline z }_2}} \right) = 1.$$   If $${\omega _1} = a + ip,{\omega _2} = b + iq$$     then

A. $$\operatorname{Re} \left( {{\omega _1}{\omega _2}} \right) = 1$$
B. $$\operatorname{Im} \left( {{\omega _1}{\omega _2}} \right) = 1$$
C. $$\operatorname{Re} \left( {{\omega _1}{\omega _2}} \right) = 0$$
D. $$\operatorname{Im} \left( {{\omega _1}{{\overline \omega }_2}} \right) = 1$$  
Answer :   $$\operatorname{Im} \left( {{\omega _1}{{\overline \omega }_2}} \right) = 1$$
Solution :
$$\eqalign{ & \operatorname{Im} \left( {{z_1}{{\overline z }_2}} \right) = 1 \cr & \Rightarrow \,\,bp - aq = 1 \cr & {\omega _1}{\overline \omega _2} = \left( {a + ip} \right)\left( {b - iq} \right) = \left( {ab + pq} \right) + i\left( {bp - aq} \right) \cr & \therefore \,\,\operatorname{Im} \left( {{\omega _1}{{\overline \omega }_2}} \right) = 1. \cr} $$

Releted MCQ Question on
Algebra >> Complex Number

Releted Question 1

If the cube roots of unity are $$1,\omega ,{\omega ^2},$$  then the roots of the equation $${\left( {x - 1} \right)^3} + 8 = 0\,\,{\text{are}}$$

A. $$ - 1,1 + 2\omega ,1 + 2{\omega ^2}$$
B. $$ - 1,1 - 2\omega ,1 - 2{\omega ^2}$$
C. $$- 1, - 1, - 1$$
D. none of these
Releted Question 2

The smallest positive integer $$n$$ for which $${\left( {\frac{{1 + i}}{{1 - i}}} \right)^n} = 1\,{\text{is}}$$

A. $$n = 8$$
B. $$n = 16$$
C. $$n = 12$$
D. none of these
Releted Question 3

The complex numbers $$z = x+ iy$$   which satisfy the equation $$\left| {\frac{{z - 5i}}{{z + 5i}}} \right| = 1$$   lie on

A. the $$x$$ - axis
B. the straight line $$y = 5$$
C. a circle passing through the origin
D. none of these
Releted Question 4

If $$z = {\left( {\frac{{\sqrt 3 }}{2} + \frac{i}{2}} \right)^5} + {\left( {\frac{{\sqrt 3 }}{2} - \frac{i}{2}} \right)^5},\,{\text{then}}$$

A. $${\text{Re}}\left( z \right) = 0$$
B. $${\text{Im}}\left( z \right) = 0$$
C. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) > 0$$
D. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) < 0$$

Practice More Releted MCQ Question on
Complex Number


Practice More MCQ Question on Maths Section