Question

Let $$z = x + iy$$   be a complex number where $$x$$ and $$y$$ are integers. Then the area of the rectangle whose vertices are the roots of the equation: $$z{\overline z ^3} + \overline z {z^3} = 350$$    is

A. 48  
B. 32
C. 40
D. 80
Answer :   48
Solution :
Given $$z = x + iy$$   where $$x$$ and $$y$$ are integer
Also $$z{\overline z ^3} + \overline z {z^3} = 350$$
$$\eqalign{ & \Rightarrow \,\,{\left| z \right|^2}\left( {{{\overline z }^2} + {z^2}} \right) = 350 \cr & \Rightarrow \,\,\left( {{x^2} + {y^2}} \right)\left( {{x^2} - {y^2}} \right) = 175 \cr & \Rightarrow \,\,\left( {{x^2} + {y^2}} \right)\left( {{x^2} - {y^2}} \right) = 25 \times 7\,\,\,\,.....\left( {\text{i}} \right) \cr & {\text{or}}\,\,\,\left( {{x^2} + {y^2}} \right)\left( {{x^2} - {y^2}} \right) = 35 \times 5\,\,\,\,\,.....\left( {{\text{ii}}} \right) \cr & \because \,\,\,x\,{\text{and}}\,y\,{\text{are}}\,\operatorname{integers} \cr & \therefore \,\,\,{x^2} + {y^2} = 25\,\,\,{\text{and}}\,{x^2} - {y^2} = 7\,\,\,\,\,\,\,\,\,\left[ {{\text{From}}\,{\text{eq}}\,\left( {\text{i}} \right)} \right] \cr & \Rightarrow \,\,{x^2} = 16\,{\text{and}}\,{y^2} = 9 \cr & \Rightarrow \,\,x = \pm 4\,{\text{and}}\,y = \pm 3 \cr & \therefore \,\,{\text{Vertices}}\,{\text{of}}\,{\text{rectangle}}\,{\text{are}} \cr & \,\,\left( {4,3} \right),\left( {4, - 3} \right),\left( { - 4, - 3} \right),\left( { - 4,3} \right). \cr & {\text{So, area of rectangle}} = 8 \times 6 = 48\,{\text{sq}}{\text{. units}} \cr & {\text{Now from eq}}{\text{.}}\left( {{\text{ii}}} \right) \cr & {\text{or }}{x^2} + {y^2} = 35\,\,{\text{and }}{x^2} - {y^2} = 5 \cr} $$
$$ \Rightarrow \,\,{x^2} = 20,$$   which is not possible for any integral value of $$x$$

Releted MCQ Question on
Algebra >> Complex Number

Releted Question 1

If the cube roots of unity are $$1,\omega ,{\omega ^2},$$  then the roots of the equation $${\left( {x - 1} \right)^3} + 8 = 0\,\,{\text{are}}$$

A. $$ - 1,1 + 2\omega ,1 + 2{\omega ^2}$$
B. $$ - 1,1 - 2\omega ,1 - 2{\omega ^2}$$
C. $$- 1, - 1, - 1$$
D. none of these
Releted Question 2

The smallest positive integer $$n$$ for which $${\left( {\frac{{1 + i}}{{1 - i}}} \right)^n} = 1\,{\text{is}}$$

A. $$n = 8$$
B. $$n = 16$$
C. $$n = 12$$
D. none of these
Releted Question 3

The complex numbers $$z = x+ iy$$   which satisfy the equation $$\left| {\frac{{z - 5i}}{{z + 5i}}} \right| = 1$$   lie on

A. the $$x$$ - axis
B. the straight line $$y = 5$$
C. a circle passing through the origin
D. none of these
Releted Question 4

If $$z = {\left( {\frac{{\sqrt 3 }}{2} + \frac{i}{2}} \right)^5} + {\left( {\frac{{\sqrt 3 }}{2} - \frac{i}{2}} \right)^5},\,{\text{then}}$$

A. $${\text{Re}}\left( z \right) = 0$$
B. $${\text{Im}}\left( z \right) = 0$$
C. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) > 0$$
D. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) < 0$$

Practice More Releted MCQ Question on
Complex Number


Practice More MCQ Question on Maths Section