Question

Let $$z$$ and $$\omega $$ be two complex numbers such that $$\left| z \right| \leqslant 1,\left| \omega \right| \leqslant 1\,\,{\text{and }}\left| {z + i\omega } \right| = \left| {z - i\bar \omega } \right| = 2.$$         Then $$z$$ equals

A. $$1$$ or $$i$$
B. $$i$$ or $$ - i$$
C. $$1$$ or $$ - i$$  
D. $$i$$ or $$ - 1$$
Answer :   $$1$$ or $$ - i$$
Solution :
We have, $$2 = \left| {z + i\omega } \right| \leqslant \left| z \right| + \left| \omega \right|\,\,\,\,\,\,\,.....\left( {\text{i}} \right)$$
$$\therefore \,\left| z \right| + \left| \omega \right| \geqslant 2$$
But given that $$\left| z \right| \leqslant 1\,\,{\text{and}}\,\,\left| \omega \right| \leqslant 1\,\,\,\,\,\,\,.....\left( {{\text{ii}}} \right)$$
$$ \Rightarrow \,\left| z \right| + \left| \omega \right| \leqslant 2$$
From (i) and (ii) $$\left| z \right| = \left| \omega \right| = 1$$
$$\eqalign{ & {\text{Also}}\,\,\left| {z + i\omega } \right| = \left| {z - i\bar \omega } \right| \cr & \Rightarrow \,{\left| {z + i\omega } \right|^2} = {\left| {z - i\bar \omega } \right|^2} \cr & \Rightarrow \,\left( {z + i\omega } \right)\left( {\bar z - i\bar \omega } \right) = \left( {\bar z + i\omega } \right)\left( {z - i\bar \omega } \right) \cr & \Rightarrow \,z\bar z + i\omega \bar z - iz\bar \omega + \omega \bar \omega = z\bar z - i\bar z\bar \omega + i\omega z + \omega \bar \omega \cr & \Rightarrow \,\omega \bar z - \bar \omega z + \bar \omega \bar z - \omega z = 0 \cr & \Rightarrow \,\left( {\omega + \bar \omega } \right)\left( {\bar z - z} \right) = 0 \cr & \Rightarrow \,z = \bar z\,\,{\text{or}}\,\,\omega = - \bar \omega \cr & \Rightarrow \,{I_m}\left( z \right) = 0 \cr & \Rightarrow \,\operatorname{Re} \left( \omega \right) = 0 \cr & {\text{Also}}\,\left| z \right| = 1,\left| \omega \right| = 1 \cr & \Rightarrow \,z = 1\,\,{\text{or}}\,\, - 1\,\,{\text{and}}\,\,\omega = i\,\,{\text{or}}\,\, - i \cr} $$

Releted MCQ Question on
Algebra >> Complex Number

Releted Question 1

If the cube roots of unity are $$1,\omega ,{\omega ^2},$$  then the roots of the equation $${\left( {x - 1} \right)^3} + 8 = 0\,\,{\text{are}}$$

A. $$ - 1,1 + 2\omega ,1 + 2{\omega ^2}$$
B. $$ - 1,1 - 2\omega ,1 - 2{\omega ^2}$$
C. $$- 1, - 1, - 1$$
D. none of these
Releted Question 2

The smallest positive integer $$n$$ for which $${\left( {\frac{{1 + i}}{{1 - i}}} \right)^n} = 1\,{\text{is}}$$

A. $$n = 8$$
B. $$n = 16$$
C. $$n = 12$$
D. none of these
Releted Question 3

The complex numbers $$z = x+ iy$$   which satisfy the equation $$\left| {\frac{{z - 5i}}{{z + 5i}}} \right| = 1$$   lie on

A. the $$x$$ - axis
B. the straight line $$y = 5$$
C. a circle passing through the origin
D. none of these
Releted Question 4

If $$z = {\left( {\frac{{\sqrt 3 }}{2} + \frac{i}{2}} \right)^5} + {\left( {\frac{{\sqrt 3 }}{2} - \frac{i}{2}} \right)^5},\,{\text{then}}$$

A. $${\text{Re}}\left( z \right) = 0$$
B. $${\text{Im}}\left( z \right) = 0$$
C. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) > 0$$
D. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) < 0$$

Practice More Releted MCQ Question on
Complex Number


Practice More MCQ Question on Maths Section