Question

Let $$x + \frac{1}{x} = 1$$   and $$a, b$$  and $$c$$ are distinct positive integers such that $$\left( {{x^a} + \frac{1}{{{x^a}}}} \right) + \left( {{x^b} + \frac{1}{{{x^b}}}} \right) + \left( {{x^c} + \frac{1}{{{x^c}}}} \right) = 0.$$         Then the minimum value of $$\left( {a + b + c} \right)$$   is

A. 7
B. 8
C. 9  
D. 10
Answer :   9
Solution :
$$\eqalign{ & x + \frac{1}{x} = 1\,\,\,\,{\text{or }}{x^2} - x + 1 = 0 \cr & \therefore x = \frac{1}{2} \pm i\frac{{\sqrt 3 }}{2}\,\,\,\,\,{\text{or }}x = {e^{\frac{{i\pi }}{3}}} \cr & \therefore {x^a} + {x^{ - a}} = {e^{\frac{{ia\pi }}{3}}} + {e^{\frac{{ - ia}}{3}}} = 2\cos \frac{{ar}}{3} \cr & {\text{Hence, }}\cos \frac{{a\pi }}{3} + \cos \frac{{b\pi }}{3} + \cos \frac{{c\pi }}{3} = 0 \cr & a,b,c \in I \cr & \therefore {\left. {a + b + c} \right|_{\min }} = \left( {1 + 3 + 5} \right) = 9 \cr} $$

Releted MCQ Question on
Algebra >> Quadratic Equation

Releted Question 1

If $$\ell ,m,n$$  are real, $$\ell \ne m,$$  then the roots by the equation: $$\left( {\ell - m} \right){x^2} - 5\left( {\ell + m} \right)x - 2\left( {\ell - m} \right) = 0$$         are

A. Real and equal
B. Complex
C. Real and unequal
D. None of these
Releted Question 2

The equation $$x + 2y + 2z = 1{\text{ and }}2x + 4y + 4z = 9{\text{ have}}$$

A. Only one solution
B. Only two solutions
C. Infinite number of solutions
D. None of these
Releted Question 3

Let $$a > 0, b > 0$$    and $$c > 0$$ . Then the roots of the equation $$a{x^2} + bx + c = 0$$

A. are real and negative
B. have negative real parts
C. both (A) and (B)
D. none of these
Releted Question 4

Both the roots of the equation $$\left( {x - b} \right)\left( {x - c} \right) + \left( {x - a} \right)\left( {x - c} \right) + \left( {x - a} \right)\left( {x - b} \right) = 0$$           are always

A. positive
B. real
C. negative
D. none of these.

Practice More Releted MCQ Question on
Quadratic Equation


Practice More MCQ Question on Maths Section