Question

Let $$\vec a,\,\vec b,\,\vec c$$   be three non-coplanar vectors and $$\vec p,\,\vec q,\,\vec r$$   are vectors defined by the relations $$\vec p = \frac{{\vec b \times \vec c}}{{\left[ {\vec a\,\vec b\,\vec c} \right]}},\,\vec q = \frac{{\vec c \times \vec a}}{{\left[ {\vec a\,\vec b\,\vec c} \right]}},\,\,\vec r = \frac{{\vec a \times \vec b}}{{\left[ {\vec a\,\vec b\,\vec c} \right]}}$$        then the value of the expression $$\left( {\vec a + \vec b} \right).\vec p + \left( {\vec b + \vec c} \right).\vec q + \left( {\vec c + \vec a} \right).\vec r$$        is equal to :

A. $$0$$
B. $$1$$
C. $$2$$
D. $$3$$  
Answer :   $$3$$
Solution :
Given that $$\vec a,\,\vec b,\,\vec c$$   are non coplanar
$$\therefore \left[ {\vec a\,\vec b\,\vec c} \right] \ne 0$$
Also $$\vec p = \frac{{\vec b \times \vec c}}{{\left[ {\vec a\,\vec b\,\vec c} \right]}},\,\vec q = \frac{{\vec c \times \vec a}}{{\left[ {\vec a\,\vec b\,\vec c} \right]}},\,\,\vec r = \frac{{\vec a \times \vec b}}{{\left[ {\vec a\,\vec b\,\vec c} \right]}}.....(1)$$
$$\eqalign{ & {\text{Now, }}\left( {\vec a + \vec b} \right).\vec p + \left( {\vec b + \vec c} \right).\vec q + \left( {\vec c + \vec a} \right).\vec r \cr & = \left( {\vec a + \vec b} \right).\frac{{\vec b \times \vec c}}{{\left[ {\vec a\,\vec b\,\vec c} \right]}} + \left( {\vec b + \vec c} \right).\frac{{\vec c \times \vec a}}{{\left[ {\vec a\,\vec b\,\vec c} \right]}} + \left( {\vec c + \vec a} \right).\frac{{\vec a \times \vec b}}{{\left[ {\vec a\,\vec b\,\vec c} \right]}} \cr & = \frac{{\vec a.\vec b \times \vec c}}{{\left[ {\vec a\,\vec b\,\vec c} \right]}} + \frac{{\vec b.\vec c \times \vec a}}{{\left[ {\vec a\,\vec b\,\vec c} \right]}} + \frac{{\vec c.\vec a \times \vec b}}{{\left[ {\vec a\,\vec b\,\vec c} \right]}} \cr & \left[ {{\text{Using }}\,\vec b.\vec b \times \vec c = \vec c.\vec c \times \vec a = \vec a.\vec a \times \vec b = 0} \right] \cr & = \frac{{\left[ {\vec a\,\vec b\,\vec c} \right]}}{{\left[ {\vec a\,\vec b\,\vec c} \right]}} + \frac{{\left[ {\vec a\,\vec b\,\vec c} \right]}}{{\left[ {\vec a\,\vec b\,\vec c} \right]}} + \frac{{\left[ {\vec a\,\vec b\,\vec c} \right]}}{{\left[ {\vec a\,\vec b\,\vec c} \right]}} \cr & = 1 + 1 + 1 \cr & = 3 \cr} $$

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section