Question

Let $$\vec V = 2\vec i + \vec j - \vec k$$    and $$\vec W = \vec i + 3\vec k.$$   If $${\vec U}$$ is a unit vector, then the maximum value of the scalar triple product $$\left| {\vec U\vec V\vec W} \right|$$   is :

A. $$-1$$
B. $$\sqrt {10} + \sqrt 6 $$
C. $$\sqrt {59} $$  
D. $$\sqrt {60} $$
Answer :   $$\sqrt {59} $$
Solution :
Given that $$\vec v = 2\hat i + \hat j - \hat k$$    and $$\vec w = \hat i + 3\hat k$$   and $$u$$ is a unit vector $$\therefore \,\,\left| {\vec u} \right| = 1$$
$$\eqalign{ & {\text{Now, }}\left[ {\vec u\,\vec v\,\vec w} \right] = \vec u.\left( {\vec v \times \vec w} \right) \cr & = \vec u.\left( {2\hat i + \hat j - \hat k} \right) \times \left( {\hat i + 3\hat k} \right) \cr & = \vec u.\left( {3\hat i - 7\hat j - \hat k} \right) \cr & = \sqrt {{3^2} + {7^2} + {1^2}} \,\cos \,\theta \cr} $$
which is maximum when $$\cos \,\theta = 1$$
$$\therefore $$ Maximum value of $$\left[ {\vec u\,\vec v\,\vec w} \right] = \sqrt {59} $$

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section