Question

Let $$\theta \in \left( {0,\frac{\pi }{4}} \right)$$   and $${t_1} = {\left( {\tan \theta } \right)^{\tan \theta }},{t_2} = {\left( {\tan \theta } \right)^{\cot \theta }},$$       $${t_3} = {\left( {\cot \theta } \right)^{\tan \theta }}\,{\text{and }}{t_4} = {\left( {\cot \theta } \right)^{\cot \theta }},$$       then

A. $${t_1} > {t_2} > {t_3} > {t_4}$$
B. $${t_4} > {t_3} > {t_1} > {t_2}$$  
C. $${t_3} > {t_1} > {t_2} > {t_4}$$
D. $${t_2} > {t_3} > {t_1} > {t_4}$$
Answer :   $${t_4} > {t_3} > {t_1} > {t_2}$$
Solution :
$$\eqalign{ & \because \,\,\theta \in \left( {0,\frac{\pi }{4}} \right) \cr & \Rightarrow \,\,\tan \theta < 1\,{\text{and }}\cot \theta > 1 \cr & {\text{Let tan}}\theta = 1 - x\,{\text{and cot}}\theta = 1 + y \cr} $$
Where $$x, y > 0$$   and are very small, then
$$\eqalign{ & \therefore \,\,{t_1} = {\left( {1 - x} \right)^{1 - x}},{t_2} = {\left( {1 - x} \right)^{1 + y}}, \cr & {t_3} = {\left( {1 + y} \right)^{1 - x}},{t_4} = {\left( {1 + y} \right)^{1 + y}} \cr} $$
$${\text{Clearly, }}{t_4} > {t_3}\,{\text{and }}{t_1} > {t_2}\,{\text{also, }}{t_3} > {t_1}$$         NOTE THIS STEP
$${\text{Thus}}\,{\text{ }}{t_4} > {t_3} > {t_1} > {t_2}.$$

Releted MCQ Question on
Trigonometry >> Trigonometric Ratio and Identities

Releted Question 1

If $$\tan \theta = - \frac{4}{3},$$   then $$\sin \theta $$  is

A. $$ - \frac{4}{5}{\text{ but not }}\frac{4}{5}$$
B. $$ - \frac{4}{5}{\text{ or }}\frac{4}{5}$$
C. $$ \frac{4}{5}{\text{ but not }} - \frac{4}{5}$$
D. None of these
Releted Question 2

If $$\alpha + \beta + \gamma = 2\pi ,$$    then

A. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
B. $$\tan \frac{\alpha }{2}\tan \frac{\beta }{2} + \tan \frac{\beta }{2}\tan \frac{\gamma }{2} + \tan \frac{\gamma }{2}\tan \frac{\alpha }{2} = 1$$
C. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = - \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
D. None of these
Releted Question 3

Given $$A = {\sin ^2}\theta + {\cos ^4}\theta $$    then for all real values of $$\theta $$

A. $$1 \leqslant A \leqslant 2$$
B. $$\frac{3}{4} \leqslant A \leqslant 1$$
C. $$\frac{13}{16} \leqslant A \leqslant 1$$
D. $$\frac{3}{4} \leqslant A \leqslant \frac{{13}}{{16}}$$
Releted Question 4

The value of the expression $$\sqrt 3 \,{\text{cosec}}\,{\text{2}}{{\text{0}}^ \circ } - \sec {20^ \circ }$$     is equal to

A. 2
B. $$\frac{{2\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$
C. 4
D. $$\frac{{4\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$

Practice More Releted MCQ Question on
Trigonometric Ratio and Identities


Practice More MCQ Question on Maths Section