Question
Let the sum of the first $$n$$ terms of a non-constant A.P., $${a_1},{a_2},{a_3},......\,\,{\text{be}}\,\,50n + \frac{{n\left( {n - 7} \right)}}{2}A,$$ where $$A$$ is a constant. If $$d$$ is the common difference of this A.P., then the ordered pair $$\left( {d,{a_{50}}} \right)$$ is equal to:
A.
$$(50, 50 + 46A)$$
B.
$$(50, 50 + 45A)$$
C.
$$(A, 50 + 45A)$$
D.
$$(A, 50 + 46A)$$
Answer :
$$(A, 50 + 46A)$$
Solution :
$$\eqalign{
& \because \,\,{S_n} = \left( {50 - \frac{{7A}}{2}} \right)n + {n^2} \times \frac{A}{2} \cr
& \Rightarrow \,\,{a_1} = 50 - 3A \cr
& \therefore \,\,d = {a_2} - {a_1} = \left( {{S_2} - {S_1}} \right) - {S_1} \cr
& \Rightarrow \,\,d = \frac{A}{2} \times 2 = A \cr
& {\text{Now, }}{a_{50}} = {a_1} + 49 \times d \cr
& = \left( {50 - 3A} \right) + 49A = 50 + 46A \cr
& {\text{So,}}\,\left( {d,{a_{50}}} \right) = \left( {A,50 + 46A} \right) \cr} $$