Question

Let the straight line $$x = b$$   divide the area enclosed by $$y = {\left( {1 - x} \right)^2},\,y = 0$$     and $$x=0$$   into two parts $${R_1}\left( {0 \leqslant x \leqslant b} \right)$$     and $${R_2}\left( {b \leqslant x \leqslant 1} \right)$$   such that $${R_1} - {R_2} = \frac{1}{4}.$$    Then $$b$$ equals-

A. $$\frac{3}{4}$$
B. $$\frac{1}{2}$$  
C. $$\frac{1}{3}$$
D. $$\frac{1}{4}$$
Answer :   $$\frac{1}{2}$$
Solution :
$${R_1} = \int_a^b {{{\left( {x - 1} \right)}^2}dx} = \left[ {\frac{{{{\left( {x - 1} \right)}^3}}}{3}} \right]_0^b = \frac{{{{\left( {b - 1} \right)}^3} + 1}}{3}$$
Definite Integration mcq solution image
$$\eqalign{ & {R_2} = \int_b^1 {{{\left( {x - 1} \right)}^2}dx} = \left[ {\frac{{{{\left( {x - 1} \right)}^3}}}{3}} \right]_b^1 = - \frac{{{{\left( {b - 1} \right)}^3}}}{3} \cr & {\text{As }}{R_1} - {R_2} = \frac{1}{4}\,\, \Rightarrow \frac{{2{{\left( {b - 1} \right)}^3}}}{3} + \frac{1}{3} = \frac{1}{4} \cr & {\text{or }}{\left( {b - 1} \right)^3} = - \frac{1}{8} \cr & {\text{or }}b - 1 = \frac{{ - 1}}{2} \cr & {\text{or }}b = \frac{1}{2} \cr} $$

Releted MCQ Question on
Calculus >> Definite Integration

Releted Question 1

The value of the definite integral $$\int\limits_0^1 {\left( {1 + {e^{ - {x^2}}}} \right)} \,dx$$     is-

A. $$ - 1$$
B. $$2$$
C. $$1 + {e^{ - 1}}$$
D. none of these
Releted Question 2

Let $$a,\,b,\,c$$   be non-zero real numbers such that $$\int\limits_0^1 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx = } \int\limits_0^2 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx.} $$
Then the quadratic equation $$a{x^2} + bx + c = 0$$     has-

A. no root in $$\left( {0,\,2} \right)$$
B. at least one root in $$\left( {0,\,2} \right)$$
C. a double root in $$\left( {0,\,2} \right)$$
D. two imaginary roots
Releted Question 3

The value of the integral $$\int\limits_0^{\frac{\pi }{2}} {\frac{{\sqrt {\cot \,x} }}{{\sqrt {\cot \,x} + \sqrt {\tan \,x} }}dx} $$     is-

A. $$\frac{\pi }{4}$$
B. $$\frac{\pi }{2}$$
C. $$\pi $$
D. none of these
Releted Question 4

For any integer $$n$$ the integral $$\int\limits_0^\pi {{e^{{{\cos }^2}x}}} {\cos ^3}\left( {2n + 1} \right)xdx$$     has the value-

A. $$\pi $$
B. $$1$$
C. $$0$$
D. none of these

Practice More Releted MCQ Question on
Definite Integration


Practice More MCQ Question on Maths Section