Question

Let the $${r^{th}}$$ term, $${t_r},$$ of a series is given by $${t_r} = \frac{r}{{1 + {r^2} + {r^4}}}.$$     Then $$\mathop {\lim }\limits_{n \to \infty } \sum\limits_{r = 1}^n {{t_r}} $$   is :

A. $$\frac{1}{4}$$
B. 1
C. $$\frac{1}{2}$$  
D. none of these
Answer :   $$\frac{1}{2}$$
Solution :
$$\eqalign{ & {t_r} = \frac{1}{2}.\frac{{2r}}{{{{\left( {{r^2} + 1} \right)}^2} - {r^2}}} \cr & = \frac{1}{2}\left\{ {\frac{1}{{{r^2} - r + 1}} - \frac{1}{{{r^2} + r + 1}}} \right\} \cr & = \frac{1}{2}\left\{ {\frac{1}{{r\left( {r - 1} \right) + 1}} - \frac{1}{{\left( {r + 1} \right)r + 1}}} \right\} \cr & \therefore \sum\limits_{r = 1}^n {{t_r}} = \sum\limits_{r = 1}^n {\frac{1}{2}\left\{ {f\left( r \right) - f\left( {r + 1} \right)} \right\}} {\text{, where }}f\left( r \right) = \frac{1}{{r\left( {r - 1} \right) + 1}} \cr & = \frac{1}{2}\left\{ {f\left( 1 \right) - f\left( {n + 1} \right)} \right\} \cr & = \frac{1}{2}\left\{ {1 - \frac{1}{{\left( {n + 1} \right)n + 1}}} \right\} \to \frac{1}{2}{\text{ as }}n \to \infty \cr} $$

Releted MCQ Question on
Calculus >> Limits

Releted Question 1

lf $$f\left( x \right) = \sqrt {\frac{{x - \sin \,x}}{{x + {{\cos }^2}x}}} ,$$     then $$\mathop {\lim }\limits_{x\, \to \,\infty } f\left( x \right)$$    is-

A. $$0$$
B. $$\infty $$
C. $$1$$
D. none of these
Releted Question 2

If $$G\left( x \right) = - \sqrt {25 - {x^2}} $$     then $$\mathop {\lim }\limits_{x\, \to \,{\text{I}}} \frac{{G\left( x \right) - G\left( I \right)}}{{x - 1}}$$     has the value-

A. $$\frac{1}{{24}}$$
B. $$\frac{1}{{5}}$$
C. $$ - \sqrt {24} $$
D. none of these
Releted Question 3

$$\mathop {\lim }\limits_{n\, \to \,\infty } \left\{ {\frac{1}{{1 - {n^2}}} + \frac{2}{{1 - {n^2}}} + ..... + \frac{n}{{1 - {n^2}}}} \right\}$$        is equal to-

A. $$0$$
B. $$ - \frac{1}{2}$$
C. $$ \frac{1}{2}$$
D. none of these
Releted Question 4

If $$\eqalign{ & f\left( x \right) = \frac{{\sin \left[ x \right]}}{{\left[ x \right]}},\,\,\left[ x \right] \ne 0 \cr & \,\,\,\,\,\,\,\,\,\,\,\,\, = 0,\,\,\,\,\,\,\,\,\,\,\,\,\,\left[ x \right] = 0 \cr} $$
Where \[\left[ x \right]\] denotes the greatest integer less than or equal to $$x.$$ then $$\mathop {\lim }\limits_{x\, \to \,0} f\left( x \right)$$   equals

A. $$1$$
B. $$0$$
C. $$ - 1$$
D. none of these

Practice More Releted MCQ Question on
Limits


Practice More MCQ Question on Maths Section