Question

Let the line $$\frac{{x - 2}}{3} = \frac{{y - 1}}{{ - 5}} = \frac{{z + 2}}{2}$$     lie in the plane $$x + 3y - \alpha z + \beta = 0.$$     Then $$\left( {\alpha ,\,\beta } \right)$$  equals :

A. $$\left( { - 6,\,7} \right)$$  
B. $$\left( {5,\, - 15} \right)$$
C. $$\left( { - 5,\,5} \right)$$
D. $$\left( {6,\, - 17} \right)$$
Answer :   $$\left( { - 6,\,7} \right)$$
Solution :
$$\because $$ The line $$\frac{{x - 2}}{3} = \frac{{y - 1}}{{ - 5}} = \frac{{z + 2}}{2}$$     lies in the plane $$x + 3y - \alpha z + \beta = 0$$
$$\therefore Pt\left( {2,\,1,\, - 2} \right)$$    lies on the plane
i.e., $$2 + 3 + 2\alpha + \beta = 0$$
or $$2\alpha + \beta + 5 = 0.....({\text{i}})$$
Also normal to plane will be perpendicular to line,
$$\eqalign{ & \therefore 3 \times 1 - 5 \times 3 + 2 \times \left( { - \alpha } \right) = 0 \cr & \Rightarrow \alpha = - 6 \cr} $$
From equation (i) then, $$\beta = 7$$
$$\therefore \,\,\left( {\alpha ,\,\beta } \right) = \left( { - 6,\,7} \right)$$

Releted MCQ Question on
Geometry >> Three Dimensional Geometry

Releted Question 1

The value of $$k$$ such that $$\frac{{x - 4}}{1} = \frac{{y - 2}}{1} = \frac{{z - k}}{2}$$     lies in the plane $$2x - 4y + z = 7,$$    is :

A. $$7$$
B. $$ - 7$$
C. no real value
D. $$4$$
Releted Question 2

If the lines $$\frac{{x - 1}}{2} = \frac{{y + 1}}{3} = \frac{{z - 1}}{4}$$      and $$\frac{{x - 3}}{1} = \frac{{y - k}}{2} = \frac{z}{1}$$     intersect, then the value of $$k$$ is :

A. $$\frac{3}{2}$$
B. $$\frac{9}{2}$$
C. $$ - \frac{2}{9}$$
D. $$ - \frac{3}{2}$$
Releted Question 3

A plane which is perpendicular to two planes $$2x - 2y + z = 0$$    and $$x - y + 2z = 4,$$    passes through $$\left( {1,\, - 2,\,1} \right).$$   The distance of the plane from the point $$\left( {1,\,2,\,2} \right)$$  is :

A. $$0$$
B. $$1$$
C. $$\sqrt 2 $$
D. $$2\sqrt 2 $$
Releted Question 4

Let $$P\left( {3,\,2,\,6} \right)$$   be a point in space and $$Q$$ be a point on the line $$\vec r = \left( {\hat i - \hat j + 2\hat k} \right) + \mu \left( { - 3\hat i + \hat j + 5\hat k} \right)$$
Then the value of $$\mu $$ for which the vector $$\overrightarrow {PQ} $$  is parallel to the plane $$x-4y+3z=1$$    is :

A. $$\frac{1}{4}$$
B. $$ - \frac{1}{4}$$
C. $$\frac{1}{8}$$
D. $$ - \frac{1}{8}$$

Practice More Releted MCQ Question on
Three Dimensional Geometry


Practice More MCQ Question on Maths Section