Question
Let $${\tan ^{ - 1}}y = {\tan ^{ - 1}}x + {\tan ^{ - 1}}\left( {\frac{{2x}}{{1 - {x^2}}}} \right),$$ where $$\left| x \right| < \frac{1}{{\sqrt 3 }}.$$ Then a value of $$y$$ is:
A.
$$\frac{{3x - {x^3}}}{{1 + 3{x^2}}}$$
B.
$$\frac{{3x + {x^3}}}{{1 + 3{x^2}}}$$
C.
$$\frac{{3x - {x^3}}}{{1 - 3{x^2}}}$$
D.
$$\frac{{3x + {x^3}}}{{1 - 3{x^2}}}$$
Answer :
$$\frac{{3x - {x^3}}}{{1 - 3{x^2}}}$$
Solution :
$$\eqalign{
& {\tan ^{ - 1}}y = {\tan ^{ - 1}}x + {\tan ^{ - 1}}\left( {\frac{{2x}}{{1 - {x^2}}}} \right) \cr
& \,\,\,\,\, = {\tan ^{ - 1}}x + 2{\tan ^{ - 1}}x = 3{\tan ^{ - 1}}x \cr
& {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left[ {\frac{{3x - {x^3}}}{{1 - 3{x^2}}}} \right] \cr
& \Rightarrow \,\,y = \frac{{3x - {x^3}}}{{1 - 3{x^2}}} \cr} $$