Question

Let $$T>0$$  be a fixed real number. Suppose $$f$$ is a continuous function such that for all $$x \in R,\,f\left( {x + T} \right) = f\left( x \right).$$
If $$I = \int\limits_0^T {f\left( x \right)dx} $$     then the value of $$\int\limits_3^{3 + 3T} {f\left( {2x} \right)dx} $$     is-

A. $$\frac{3}{{2I}}$$
B. $$2I$$
C. $$3I$$  
D. $$6I$$
Answer :   $$3I$$
Solution :
Given that $$T>0$$  is a fixed real number. $$f$$ is continuous $$\forall \,x \in R$$   such that $$f\left( {x + T} \right) = f\left( x \right)$$
$$ \Rightarrow f$$  is a periodic function of period $$T$$
Also given $$I = \int_0^T {f\left( x \right)dx} $$
Then, let $${I_1} = \int_3^{3 + 3T} {f\left( {2x} \right)dx} $$
$$\eqalign{ & {\text{Put }}2x = z\,\, \Rightarrow dx = \frac{{dz}}{2} \cr & {\text{Also as }}x \to 3,\,z \to 6;\, \cr & {\text{As }}x \to 3 + 3T,\,z \to 6 + 6T \cr & {I_1} = \frac{1}{2}\int_6^{6 + 6T} {f\left( z \right)dz} \cr & = \frac{1}{2}\left[ {\int_6^T {f\left( z \right)dz} + \sum\limits_{n = 1}^5 {\int_{nT}^{\left( {n + 1} \right)T} {f\left( z \right)dz} } + \int_{6T}^{6T + 6} {f\left( z \right)dz} } \right] \cr & {\text{Now, }}\int_{nT}^{\left( {n + 1} \right)T} {f\left( z \right)dz} = \int_0^T {f\left( {nT + u} \right)du,} \cr & {\text{where }}z = nT + u \cr & = \int_0^T {f\left( u \right)du = 1\,\,\,\,\,\,\,\,\,\,\left[ {\because f\left( {nT + u} \right) = f\left( u \right)} \right]} \cr} $$
Similarly, we can show that
$$\eqalign{ & \int_{6T}^{6T + 6} {f\left( z \right)dz} = \int_0^6 {f\left( z \right)dz} \cr & \therefore {I_1} = \frac{1}{2}\left[ {\int\limits_6^T {f\left( z \right)dz} + 5I + \int\limits_0^6 {f\left( z \right)dz} } \right] \cr & = \frac{1}{2}\left[ {\int\limits_6^T {f\left( z \right)dz} + 5I} \right] \cr & = \frac{1}{2}\left( {6I} \right) \cr & = 3I \cr} $$

Releted MCQ Question on
Calculus >> Definite Integration

Releted Question 1

The value of the definite integral $$\int\limits_0^1 {\left( {1 + {e^{ - {x^2}}}} \right)} \,dx$$     is-

A. $$ - 1$$
B. $$2$$
C. $$1 + {e^{ - 1}}$$
D. none of these
Releted Question 2

Let $$a,\,b,\,c$$   be non-zero real numbers such that $$\int\limits_0^1 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx = } \int\limits_0^2 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx.} $$
Then the quadratic equation $$a{x^2} + bx + c = 0$$     has-

A. no root in $$\left( {0,\,2} \right)$$
B. at least one root in $$\left( {0,\,2} \right)$$
C. a double root in $$\left( {0,\,2} \right)$$
D. two imaginary roots
Releted Question 3

The value of the integral $$\int\limits_0^{\frac{\pi }{2}} {\frac{{\sqrt {\cot \,x} }}{{\sqrt {\cot \,x} + \sqrt {\tan \,x} }}dx} $$     is-

A. $$\frac{\pi }{4}$$
B. $$\frac{\pi }{2}$$
C. $$\pi $$
D. none of these
Releted Question 4

For any integer $$n$$ the integral $$\int\limits_0^\pi {{e^{{{\cos }^2}x}}} {\cos ^3}\left( {2n + 1} \right)xdx$$     has the value-

A. $$\pi $$
B. $$1$$
C. $$0$$
D. none of these

Practice More Releted MCQ Question on
Definite Integration


Practice More MCQ Question on Maths Section