Let $$\sum\limits_{k = 1}^{10} f \left( {a + k} \right) = 16\left( {{2^{10}} - 1} \right),$$ where the function $$f$$ satisfies $$f\left( {x + y} \right) = f\left( x \right)f\left( y \right)$$ for all natural numbers $$x,y$$ and $$f\left( a \right) = 2.$$ Then the natural number $$'a'$$ is: