Question

Let $${S_n}\left( {1 \leqslant n \leqslant 9} \right)$$   denotes the sum of $$n$$ terms of series $$1 + 22 + 333 + . . . . . + 9999999999,$$       then for $${2 \leqslant n \leqslant 9}$$

A. $${S_n} - {S_{n - 1}} = \frac{1}{9}\left( {{{10}^n} - {n^2} + n} \right)$$
B. $${S_n} = \frac{1}{9}\left( {{{10}^n} - {n^2} + 2n - 2} \right)$$
C. $$9\left( {{S_n} - {S_{n - 1}}} \right) = n\left( {{{10}^n} - 1} \right)$$  
D. None of these
Answer :   $$9\left( {{S_n} - {S_{n - 1}}} \right) = n\left( {{{10}^n} - 1} \right)$$
Solution :
$$\eqalign{ & {S_n} = \frac{1}{9}\left( 9 \right) + \frac{2}{9}\left( {99} \right) + \frac{3}{9}\left( {999} \right) + .... \cr & = \frac{1}{9}\left[ {10 + {{2.10}^2} + {{3.10}^3} + ....} \right] - \frac{1}{9}\left[ {1 + 2 + 3 + ....} \right] \cr & = \frac{1}{9}S - \frac{1}{9}\frac{{n\left( {n + 1} \right)}}{2} \cr & S = 10 + {2.10^2} + {3.10^3} + .... + n{.10^n} \cr & \frac{{10S = {{10}^2} + {{2.10}^3} + .... + \left( {n - 1} \right){{10}^n} + n{{.10}^{n + 1}}}}{{ - 9S = \left( {10 + {{10}^2} + .... + {{10}^n}} \right) - n{{.10}^{n + 1}}}} \cr & S = \frac{n}{9}{10^{n + 1}} - \frac{{{{10}^{n + 1}} - 10}}{{81}} \cr & \therefore {S_n} = \frac{n}{{81}}{10^{n + 1}} - \frac{{{{10}^{n + 1}} - 10}}{{9.81}} - \frac{1}{9}\frac{{n\left( {n + 1} \right)}}{2} \cr & \therefore 9{S_n} = \frac{{\left( {9n - 1} \right){{10}^{n + 1}}}}{{81}} + \frac{{10}}{{81}} - \frac{{n\left( {n + 1} \right)}}{2} \cr & \therefore 9\left( {{S_n} - {S_{n - 1}}} \right) = \frac{{{{10}^n}}}{{81}}\left\{ {10\left( {9n - 1} \right) - \left( {9n - 10} \right)} \right\} - n = n\left( {{{10}^n} - 1} \right) \cr} $$

Releted MCQ Question on
Algebra >> Sequences and Series

Releted Question 1

If $$x, y$$ and $$z$$ are $${p^{{\text{th}}}},{q^{{\text{th}}}}\,{\text{and }}{r^{{\text{th}}}}$$   terms respectively of an A.P. and also of a G.P., then $${x^{y - z}}{y^{z - x}}{z^{x - y}}$$   is equal to:

A. $$xyz$$
B. 0
C. 1
D. None of these
Releted Question 2

The third term of a geometric progression is 4. The product of the first five terms is

A. $${4^3}$$
B. $${4^5}$$
C. $${4^4}$$
D. none of these
Releted Question 3

The rational number, which equals the number $$2.\overline {357} $$   with recurring decimal is

A. $$\frac{{2355}}{{1001}}$$
B. $$\frac{{2379}}{{997}}$$
C. $$\frac{{2355}}{{999}}$$
D. none of these
Releted Question 4

If $$a, b, c$$  are in G.P., then the equations $$a{x^2} + 2bx + c = 0$$     and $$d{x^2} + 2ex + f = 0$$     have a common root if $$\frac{d}{a},\frac{e}{b},\frac{f}{c}$$   are in-

A. A.P.
B. G.P.
C. H.P.
D. none of these

Practice More Releted MCQ Question on
Sequences and Series


Practice More MCQ Question on Maths Section