Question

Let $$R$$ be the real line. Consider the following subsets of the plane $$R \times R:$$
$$\eqalign{ & S = \left\{ {\left( {x,y} \right):y = x + 1\,{\text{and }}0 < x < 2} \right\} \cr & T = \left\{ {\left( {x,y} \right):x - y\,\,{\text{is an integer}}} \right\}, \cr} $$
Which one of the following is true?

A. Neither $$S$$ nor $$T$$ is an equivalence relation on $$R$$
B. Both $$S$$ and $$T$$ are equivalence relation on $$R$$
C. $$S$$ is an equivalence relation on $$R$$ but $$T$$ is not
D. $$T$$ is an equivalence relation on $$R$$ but $$S$$ is not  
Answer :   $$T$$ is an equivalence relation on $$R$$ but $$S$$ is not
Solution :
$$\eqalign{ & {\text{Given }}S = \left\{ {\left( {x,y} \right):y = x + 1\,{\text{and }}0 < x < 2} \right\} \cr & \because \,\,x \ne x + 1\,\,{\text{for any }}x \in \left( {0,2} \right) \Rightarrow \left( {x,x} \right) \notin S \cr & \therefore \,\,S\,\,{\text{is not reflexive}}{\text{.}} \cr} $$
Hence $$S$$ in not an equivalence relation.
$$\eqalign{ & {\text{Also }}T = \left\{ {\left( {x,y} \right):x - y\,\,{\text{is an integer}}} \right\} \cr & \because \,\,x - x = 0\,\,{\text{is an integer }}\forall \,x \in R \cr & \therefore \,\,T\,\,{\text{is reflexive}}{\text{.}} \cr} $$
If $$x - y$$  is an integer then $$y - x$$  is also an integer
∴ $$T$$ is symmetric.
If $$x - y$$  is an integer and $$y - z$$  is an integer then $$(x - y) + (y - z) = x - z$$      is also an integer.
∴ $$T$$ is transitive
Hence $$T$$ is an equivalence relation.

Releted MCQ Question on
Algebra >> Complex Number

Releted Question 1

If the cube roots of unity are $$1,\omega ,{\omega ^2},$$  then the roots of the equation $${\left( {x - 1} \right)^3} + 8 = 0\,\,{\text{are}}$$

A. $$ - 1,1 + 2\omega ,1 + 2{\omega ^2}$$
B. $$ - 1,1 - 2\omega ,1 - 2{\omega ^2}$$
C. $$- 1, - 1, - 1$$
D. none of these
Releted Question 2

The smallest positive integer $$n$$ for which $${\left( {\frac{{1 + i}}{{1 - i}}} \right)^n} = 1\,{\text{is}}$$

A. $$n = 8$$
B. $$n = 16$$
C. $$n = 12$$
D. none of these
Releted Question 3

The complex numbers $$z = x+ iy$$   which satisfy the equation $$\left| {\frac{{z - 5i}}{{z + 5i}}} \right| = 1$$   lie on

A. the $$x$$ - axis
B. the straight line $$y = 5$$
C. a circle passing through the origin
D. none of these
Releted Question 4

If $$z = {\left( {\frac{{\sqrt 3 }}{2} + \frac{i}{2}} \right)^5} + {\left( {\frac{{\sqrt 3 }}{2} - \frac{i}{2}} \right)^5},\,{\text{then}}$$

A. $${\text{Re}}\left( z \right) = 0$$
B. $${\text{Im}}\left( z \right) = 0$$
C. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) > 0$$
D. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) < 0$$

Practice More Releted MCQ Question on
Complex Number


Practice More MCQ Question on Maths Section