Question

Let $$R$$ be a relation over the $$N \times N$$  and it is defined by $$\left( {a,\,b} \right)R\left( {c,\,d} \right) \Rightarrow a + d = b + c.$$      Then, $$R$$ is :

A. Reflexive only
B. Symmetric only
C. Transitive only
D. An equivalence relation  
Answer :   An equivalence relation
Solution :
$$\eqalign{ & {\text{We have }}\left( {a,\,b} \right)R\left( {a,\,b} \right)\,{\text{for all }}\left( {a,\,b} \right)\, \in \,N \times N \cr & {\text{As}}\,a + b = b + a{\text{. Hence }}R\,{\text{is reflexive}} \cr & R\,{\text{is symmetric for we have }}\left( {a,\,b} \right)R\left( {c,\,d} \right) \cr & \Rightarrow a + d = b + c\,\,\,\,\,\, \Rightarrow d + a = c + b \cr & \Rightarrow c + b = d + a\,\,\,\,\,\, \Rightarrow \left( {c,\,d} \right)R\left( {e,\,f} \right) \cr & {\text{Then, by defination of }}R,\,{\text{we have}} \cr & a + d = b + c{\text{ and }}c + f = d + e \cr & {\text{So, by addition, we get}} \cr & a + d + c + f = b + c + d + c{\text{ or }}a + f = b + e \cr & {\text{Hence, }}\left( {a,\,b} \right)R\left( {e,\,f} \right) \cr & {\text{Thuse, }}\left( {a,\,b} \right)R\left( {c,\,d} \right){\text{ and }}\left( {c,\,d} \right)R\left( {e,\,f} \right) \cr & \Rightarrow \,\left( {a,\,b} \right)R\left( {e,\,f} \right) \cr} $$

Releted MCQ Question on
Calculus >> Sets and Relations

Releted Question 1

If $$X$$ and $$Y$$ are two sets, then $$X \cap {\left( {X \cup Y} \right)^c}$$   equals.

A. $$X$$
B. $$Y$$
C. $$\phi $$
D. None of these
Releted Question 2

The expression $$\frac{{12}}{{3 + \sqrt 5 + 2\sqrt 2 }}$$    is equal to

A. $$1 - \sqrt 5 + \sqrt 2 + \sqrt {10} $$
B. $$1 + \sqrt 5 + \sqrt 2 - \sqrt {10} $$
C. $$1 + \sqrt 5 - \sqrt 2 + \sqrt {10} $$
D. $$1 - \sqrt 5 - \sqrt 2 + \sqrt {10} $$
Releted Question 3

If $${x_1},{x_2},.....,{x_n}$$    are any real numbers and $$n$$ is any positive integer, then

A. $$n\sum\limits_{i = 1}^n {{x_i}^2 < {{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
B. $$\sum\limits_{i = 1}^n {{x_i}^2 \geqslant {{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
C. $$\sum\limits_{i = 1}^n {{x_i}^2 \geqslant n{{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
D. none of these
Releted Question 4

Let $$S$$ = {1, 2, 3, 4}. The total number of unordered pairs of disjoint subsets of $$S$$ is equal to

A. 25
B. 34
C. 42
D. 41

Practice More Releted MCQ Question on
Sets and Relations


Practice More MCQ Question on Maths Section