Question

Let $$PQR$$  be a triangle of area $$\Delta $$ with $$a = 2,b = \frac{7}{2}$$   and $$c = \frac{5}{2},$$  where $$a, b$$  and $$c$$ are the lengths of the sides of the triangle opposite to the angles at $$P, Q$$  and $$R$$ respectively.
Then $$\frac{{2\sin P - \sin 2P}}{{2\sin P + \sin 2P}}$$    equals

A. $$\frac{3}{{4\Delta }}$$
B. $$\frac{45}{{4\Delta }}$$
C. $${\left( {\frac{3}{{4\Delta }}} \right)^2}$$  
D. $${\left( {\frac{45}{{4\Delta }}} \right)^2}$$
Answer :   $${\left( {\frac{3}{{4\Delta }}} \right)^2}$$
Solution :
Properties and Solutons of Triangle mcq solution image
$$\eqalign{ & \frac{{2\sin P - 2\sin P\cos P}}{{2\sin P + 2\sin P\cos P}} \cr & = \frac{{1 - \cos P}}{{1 + \cos P}} = \frac{{2{{\sin }^2}\frac{P}{2}}}{{2{{\cos }^2}\frac{P}{2}}} \cr & = {\tan ^2}\frac{P}{2} = \frac{{\left( {s - b} \right)\left( {s - c} \right)}}{{s\left( {s - a} \right)}} = \frac{{{{\left( {\left( {s - b} \right)\left( {s - c} \right)} \right)}^2}}}{{{\Delta ^2}}} \cr & = \frac{{{{\left( {\left( {\frac{1}{2}} \right)\left( {\frac{3}{2}} \right)} \right)}^2}}}{{{\Delta ^2}}} = {\left( {\frac{3}{{4\Delta }}} \right)^2} \cr} $$

Releted MCQ Question on
Trigonometry >> Properties and Solutons of Triangle

Releted Question 1

If the bisector of the angle $$P$$ of a triangle $$PQR$$  meets $$QR$$  in $$S,$$ then

A. $$QS = SR$$
B. $$QS : SR = PR : PQ$$
C. $$QS : SR = PQ : PR$$
D. None of these
Releted Question 2

From the top of a light-house 60 metres high with its base at the sea-level, the angle of depression of a boat is 15°. The distance of the boat from the foot of the light house is

A. $$\left( {\frac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}}} \right)60\,{\text{metres}}$$
B. $$\left( {\frac{{\sqrt 3 + 1}}{{\sqrt 3 - 1}}} \right)60\,{\text{metres}}$$
C. $${\left( {\frac{{\sqrt 3 + 1}}{{\sqrt 3 - 1}}} \right)^2}{\text{metres}}$$
D. none of these
Releted Question 3

In a triangle $$ABC,$$  angle $$A$$ is greater than angle $$B.$$ If the measures of angles $$A$$ and $$B$$ satisfy the equation $$3\sin x - 4{\sin ^3}x - k = 0, 0 < k < 1,$$       then the measure of angle $$C$$ is

A. $$\frac{\pi }{3}$$
B. $$\frac{\pi }{2}$$
C. $$\frac{2\pi }{3}$$
D. $$\frac{5\pi }{6}$$
Releted Question 4

In a triangle $$ABC,$$  $$\angle B = \frac{\pi }{3}{\text{ and }}\angle C = \frac{\pi }{4}.$$     Let $$D$$ divide $$BC$$  internally in the ratio 1 : 3 then $$\frac{{\sin \angle BAD}}{{\sin \angle CAD}}$$   is equal to

A. $$\frac{1}{{\sqrt 6 }}$$
B. $${\frac{1}{3}}$$
C. $$\frac{1}{{\sqrt 3 }}$$
D. $$\sqrt {\frac{2}{3}} $$

Practice More Releted MCQ Question on
Properties and Solutons of Triangle


Practice More MCQ Question on Maths Section