Question

Let $$PQR$$  be a right angled isosceles triangle, right angled at $$P\left( {2,\,1} \right).$$   If the equation of the line $$QR$$  is $$2x + y =3,$$    then the equation representing the pair of lines $$PQ$$  and $$PR$$  is-

A. $$3{x^2} - 3{y^2} + 8xy + 20x + 10y + 25 = 0$$
B. $$3{x^2} - 3{y^2} + 8xy - 20x - 10y + 25 = 0$$  
C. $$3{x^2} - 3{y^2} + 8xy + 10x + 15y + 20 = 0$$
D. $$3{x^2} - 3{y^2} - 8xy - 10x - 15y - 20 = 0$$
Answer :   $$3{x^2} - 3{y^2} + 8xy - 20x - 10y + 25 = 0$$
Solution :
Let $$m$$ be the slope of $$PQ$$  then
$$\eqalign{ & \tan \,{45^ \circ } = \left| {\frac{{m - \left( { - 2} \right)}}{{1 + m\left( { - 2} \right)}}} \right| \cr & \Rightarrow 1 = \left| {\frac{{m + 2}}{{1 - 2m}}} \right| \cr & \Rightarrow \pm 1 = \frac{{m + 2}}{{1 - 2m}} \cr & \Rightarrow m + 2 = 1 - 2m\,\,\,{\text{or}}\,\, - 1 + 2m = m + 2 \cr & \Rightarrow m = - \frac{1}{3}\,\,\,\,\,\,{\text{or}}\,\,\,\,\,m = 3 \cr} $$
Straight Lines mcq solution image
As $$PR$$  also makes $$\angle {45^ \circ }$$   with $$RQ.$$
$$\therefore $$ The above two values of $$m$$ are for $$PQ$$  and $$PR.$$
$$\therefore $$ Equation of $$PQ,$$
$$\eqalign{ & y - 1 = - \frac{1}{3}\left( {x - 2} \right) \cr & \Rightarrow 3y - 3 = - x + 2 \cr & \Rightarrow x + 3y - 5 = 0 \cr} $$
and equation of $$PR$$  is $$ \Rightarrow 3x - y - 5 = 0$$
$$\therefore $$ Combined equation of $$PQ$$  and $$PR$$  is
$$\eqalign{ & \left( {x - 3y - 5} \right)\left( {3x - y - 5} \right) = 0 \cr & \Rightarrow 3{x^2} - 3{y^2} + 8xy - 20x - 10y + 25 = 0 \cr} $$

Releted MCQ Question on
Geometry >> Straight Lines

Releted Question 1

The points $$\left( { - a, - b} \right),\left( {0,\,0} \right),\left( {a,\,b} \right)$$     and $$\left( {{a^2},\,ab} \right)$$  are :

A. Collinear
B. Vertices of a parallelogram
C. Vertices of a rectangle
D. None of these
Releted Question 2

The point (4, 1) undergoes the following three transformations successively.
(i) Reflection about the line $$y =x.$$
(ii) Translation through a distance 2 units along the positive direction of $$x$$-axis.
(iii) Rotation through an angle $$\frac{p}{4}$$ about the origin in the counter clockwise direction.
Then the final position of the point is given by the coordinates.

A. $$\left( {\frac{1}{{\sqrt 2 }},\,\frac{7}{{\sqrt 2 }}} \right)$$
B. $$\left( { - \sqrt 2 ,\,7\sqrt 2 } \right)$$
C. $$\left( { - \frac{1}{{\sqrt 2 }},\,\frac{7}{{\sqrt 2 }}} \right)$$
D. $$\left( {\sqrt 2 ,\,7\sqrt 2 } \right)$$
Releted Question 3

The straight lines $$x + y= 0, \,3x + y-4=0,\,x+ 3y-4=0$$         form a triangle which is-

A. isosceles
B. equilateral
C. right angled
D. none of these
Releted Question 4

If $$P = \left( {1,\,0} \right),\,Q = \left( { - 1,\,0} \right)$$     and $$R = \left( {2,\,0} \right)$$  are three given points, then locus of the point $$S$$ satisfying the relation $$S{Q^2} + S{R^2} = 2S{P^2},$$    is-

A. a straight line parallel to $$x$$-axis
B. a circle passing through the origin
C. a circle with the centre at the origin
D. a straight line parallel to $$y$$-axis

Practice More Releted MCQ Question on
Straight Lines


Practice More MCQ Question on Maths Section