Question

Let $$ - \frac{\pi }{6} < \theta < - \frac{\pi }{{12}}.$$    Suppose $${\alpha _1}$$ and $${\beta _1}$$ are the roots of the equation $${x^2} - 2x\sec \alpha + 1 = 0$$     and $$\,{\alpha _2}$$  and $${\beta _2}$$ are the roots of the equation $${x^2} + 2x\tan \theta - 1 = 0.\,$$    If $${\alpha _1}\, > {\beta _1}$$  and $${\alpha _2}\, > {\beta _2}$$  then $$\,{\alpha _1}\, + {\beta _2}$$  equals

A. $$2\left( {\sec \theta - \tan \theta } \right)$$
B. $$2\sec \theta $$
C. $$ - 2\tan \theta $$  
D. 0
Answer :   $$ - 2\tan \theta $$
Solution :
$$\eqalign{ & {x^2} - 2x\sec \theta + 1 = 0 \cr & \Rightarrow x = \sec \,\,\theta \pm \,\tan \theta \cr & {\text{and }}{x^2} + 2x\tan \theta - 1 = 0 \cr & \Rightarrow \,\,x = - \tan \theta \pm \sec \theta \cr & \because - \frac{\pi }{6} < \theta < \, - \frac{\pi }{{12}} \cr & \Rightarrow \sec \frac{\pi }{6} > \sec \theta > \sec \frac{\pi }{{12}} \cr & {\text{and}}\,\, - \tan \frac{\pi }{6} < \tan \theta < - \frac{{\tan \pi }}{{12}} \cr & {\text{also}}\,\,\tan \frac{\pi }{{12}} < - \tan \theta < \tan \frac{\pi }{6} \cr & {\alpha _1},{\beta _1}\,{\text{are}}\,{\text{roots}}\,{\text{of }}{x^2} - 2x\,\sec \theta \, + 1 = 0 \cr & {\text{and}}\,{\alpha _1} > {\beta _1} \cr & \therefore {\alpha _1} = \sec \theta - \tan \theta \,\,{\text{and }}{\beta _1} = \sec \theta + \tan \theta \cr & {\alpha _2},{\beta _2}\,{\text{are}}\,{\text{roots of }}{x^2} + 2x\,\tan {\text{ }}\theta - 1 = 0\,\,{\text{and}}\,{\alpha _2} > {\beta _2} \cr & \therefore {\alpha _2} = - \tan \,\theta + \sec \theta ,{\beta _2} = - \tan \,\theta - \sec \theta \cr & \therefore {\alpha _1} + {\beta _2} = \sec \theta \, - \tan \theta - \tan \theta - \sec \theta = - 2\tan \theta \cr} $$

Releted MCQ Question on
Algebra >> Quadratic Equation

Releted Question 1

If $$\ell ,m,n$$  are real, $$\ell \ne m,$$  then the roots by the equation: $$\left( {\ell - m} \right){x^2} - 5\left( {\ell + m} \right)x - 2\left( {\ell - m} \right) = 0$$         are

A. Real and equal
B. Complex
C. Real and unequal
D. None of these
Releted Question 2

The equation $$x + 2y + 2z = 1{\text{ and }}2x + 4y + 4z = 9{\text{ have}}$$

A. Only one solution
B. Only two solutions
C. Infinite number of solutions
D. None of these
Releted Question 3

Let $$a > 0, b > 0$$    and $$c > 0$$ . Then the roots of the equation $$a{x^2} + bx + c = 0$$

A. are real and negative
B. have negative real parts
C. both (A) and (B)
D. none of these
Releted Question 4

Both the roots of the equation $$\left( {x - b} \right)\left( {x - c} \right) + \left( {x - a} \right)\left( {x - c} \right) + \left( {x - a} \right)\left( {x - b} \right) = 0$$           are always

A. positive
B. real
C. negative
D. none of these.

Practice More Releted MCQ Question on
Quadratic Equation


Practice More MCQ Question on Maths Section