Question

Let $$p\left( x \right)$$  be a function defined on R such that $$p'\left( x \right) = p'\left( {1 - x} \right),$$    for all $$x \in \left[ {0,\,1} \right],p\left( 0 \right) = 1$$    and $$p\left( 1 \right) = 41.$$   Then $$\int\limits_0^1 {p\left( x \right)dx} $$   equals-

A. $$21$$  
B. $$41$$
C. $$42$$
D. $$\sqrt {41} $$
Answer :   $$21$$
Solution :
$$\eqalign{ & p'\left( x \right) = p'\left( {1 - x} \right)\,\, \Rightarrow p\left( x \right) = - p\left( {1 - x} \right) + c \cr & {\text{At }}x = 0 \cr & p\left( 0 \right) = - p\left( 1 \right) + c\,\, \Rightarrow 42 = c \cr & {\text{Now }}p\left( x \right) = - p\left( {1 - x} \right) + 42 \cr & \Rightarrow p\left( x \right) + p\left( {1 - x} \right) = 42 \cr & \Rightarrow I = \int\limits_0^1 {p\left( x \right)dx} .....{\text{(i)}} \cr & \Rightarrow I = \int\limits_0^1 {p\left( {1 - x} \right)dx} .....{\text{(ii)}} \cr} $$
on adding (i) and (ii), we get
$$2I = \int\limits_0^1 {\left( {42} \right)dx} \,\, \Rightarrow I = 21$$

Releted MCQ Question on
Calculus >> Definite Integration

Releted Question 1

The value of the definite integral $$\int\limits_0^1 {\left( {1 + {e^{ - {x^2}}}} \right)} \,dx$$     is-

A. $$ - 1$$
B. $$2$$
C. $$1 + {e^{ - 1}}$$
D. none of these
Releted Question 2

Let $$a,\,b,\,c$$   be non-zero real numbers such that $$\int\limits_0^1 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx = } \int\limits_0^2 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx.} $$
Then the quadratic equation $$a{x^2} + bx + c = 0$$     has-

A. no root in $$\left( {0,\,2} \right)$$
B. at least one root in $$\left( {0,\,2} \right)$$
C. a double root in $$\left( {0,\,2} \right)$$
D. two imaginary roots
Releted Question 3

The value of the integral $$\int\limits_0^{\frac{\pi }{2}} {\frac{{\sqrt {\cot \,x} }}{{\sqrt {\cot \,x} + \sqrt {\tan \,x} }}dx} $$     is-

A. $$\frac{\pi }{4}$$
B. $$\frac{\pi }{2}$$
C. $$\pi $$
D. none of these
Releted Question 4

For any integer $$n$$ the integral $$\int\limits_0^\pi {{e^{{{\cos }^2}x}}} {\cos ^3}\left( {2n + 1} \right)xdx$$     has the value-

A. $$\pi $$
B. $$1$$
C. $$0$$
D. none of these

Practice More Releted MCQ Question on
Definite Integration


Practice More MCQ Question on Maths Section