Question
      
        Let $$\overrightarrow p ,\,\overrightarrow q ,\,\overrightarrow r $$   be three mutually perpendicular vectors of the same magnitude. If a vector $$\overrightarrow x $$ satisfies the equation $$\overrightarrow p  \times \left\{ {\left( {\overrightarrow x  - \overrightarrow q } \right) \times \overrightarrow p } \right\} + \overrightarrow q  \times \left\{ {\left( {\overrightarrow x  - \overrightarrow r } \right) \times \overrightarrow q } \right\} + \overrightarrow r \left\{ {\left( {\overrightarrow x  - \overrightarrow p } \right) \times \overrightarrow r } \right\} = \overrightarrow 0 $$                then $$\overrightarrow x $$ is given by :      
       A.
        $$\frac{1}{2}\left( {\overrightarrow p  + \overrightarrow q  - 2\overrightarrow r } \right)$$              
       B.
        $$\frac{1}{2}\left( {\overrightarrow p  + \overrightarrow q  + \overrightarrow r } \right)$$                 
              
       C.
        $$\frac{1}{3}\left( {\overrightarrow p  + \overrightarrow q  + \overrightarrow r } \right)$$              
       D.
        $$\frac{1}{3}\left( {2\overrightarrow p  + \overrightarrow q  + \overrightarrow r } \right)$$              
            
                Answer :  
        $$\frac{1}{2}\left( {\overrightarrow p  + \overrightarrow q  + \overrightarrow r } \right)$$      
             Solution :
        $$\eqalign{
  & {\text{Here }}\left( {\overrightarrow p .\overrightarrow p } \right)\left( {\overrightarrow x  - \overrightarrow q } \right) - \left\{ {\overrightarrow p .\left( {\overrightarrow x  - \overrightarrow q } \right)} \right\}\overrightarrow p  + \left( {\overrightarrow q .\overrightarrow q } \right)\left( {\overrightarrow x  - \overrightarrow r } \right) - \left\{ {\overrightarrow q .\left( {\overrightarrow x  - \overrightarrow r } \right)} \right\}\overrightarrow q  + \left( {\overrightarrow r .\overrightarrow r } \right)\left( {\overrightarrow x  - \overrightarrow p } \right) - \left\{ {\overrightarrow r .\left( {\overrightarrow x  - \overrightarrow p } \right)} \right\}\overrightarrow r  = 0  \cr 
  & {\text{or  }}{\lambda ^2}\left( {\overrightarrow x  - \overrightarrow q  + \overrightarrow x  - \overrightarrow r  + \overrightarrow x  - \overrightarrow p } \right) = \left\{ {\overrightarrow p .\left( {\overrightarrow x  - \overrightarrow q } \right)} \right\}\overrightarrow p  + \left\{ {\overrightarrow q .\left( {\overrightarrow x  - \overrightarrow r } \right)} \right\}\overrightarrow q  + \left\{ {\overrightarrow r .\left( {\overrightarrow x  - \overrightarrow p } \right)} \right\}\overrightarrow r ,  \cr 
  & {\text{where }}\left| {\overrightarrow p } \right| = \left| {\overrightarrow q } \right| = \left| {\overrightarrow r } \right| = \lambda   \cr 
  & {\text{or  }}{\lambda ^2}\left\{ {3\overrightarrow x  - \left( {\overrightarrow p  + \overrightarrow q  + \overrightarrow r } \right)} \right\} = \left( {\overrightarrow p .\overrightarrow x } \right)\overrightarrow p  + \left( {\overrightarrow q .\overrightarrow x } \right)\overrightarrow q  + \left( {\overrightarrow r .\overrightarrow x } \right)\overrightarrow r ,  \cr 
  & {\text{because }}\overrightarrow p ,\,\overrightarrow q ,\,\overrightarrow r {\text{ are mutually perpendicular}}{\text{.}}  \cr 
  & {\text{Let  }}\overrightarrow x  = \alpha \overrightarrow p  + \beta \overrightarrow q  + \gamma \overrightarrow r {\text{. Then}}  \cr 
  & \,\,\,\,\,\,\,\,\,\,\,\overrightarrow p .\overrightarrow x  = \alpha {\left| {\overrightarrow p } \right|^2} = \alpha {\lambda ^2},\,\overrightarrow q .\overrightarrow x  = \beta {\left| {\overrightarrow q } \right|^2} = \beta {\lambda ^2}  \cr 
  & \,\,\,\,\,\,\,\,\,\,\,\overrightarrow r .\overrightarrow x  = \gamma {\left| {\overrightarrow r } \right|^2} = \gamma {\lambda ^2}  \cr 
  & \therefore \,{\lambda ^2}\left\{ {3\overrightarrow x  - \left( {\overrightarrow p  + \overrightarrow q  + \overrightarrow r } \right)} \right\} = {\lambda ^2}\overrightarrow x \,\,\,\,{\text{or  }}3\overrightarrow x  - \left( {\overrightarrow p  + \overrightarrow q  + \overrightarrow r } \right) = \overrightarrow x  \cr} $$