Question

Let $$\overrightarrow p ,\,\overrightarrow q ,\,\overrightarrow r $$   be three mutually perpendicular vectors of the same magnitude. If a vector $$\overrightarrow x $$ satisfies the equation $$\overrightarrow p \times \left\{ {\left( {\overrightarrow x - \overrightarrow q } \right) \times \overrightarrow p } \right\} + \overrightarrow q \times \left\{ {\left( {\overrightarrow x - \overrightarrow r } \right) \times \overrightarrow q } \right\} + \overrightarrow r \times \left\{ {\left( {\overrightarrow x - \overrightarrow p } \right) \times \overrightarrow r } \right\} = \overrightarrow 0 $$                 then $$\overrightarrow x $$ is given by :

A. $$\frac{1}{2}\left( {\overrightarrow p + \overrightarrow q - 2\overrightarrow r } \right)$$
B. $$\frac{1}{2}\left( {\overrightarrow p + \overrightarrow q + \overrightarrow r } \right)$$  
C. $$\frac{1}{3}\left( {\overrightarrow p + \overrightarrow q + \overrightarrow r } \right)$$
D. $$\frac{1}{3}\left( {2\overrightarrow p + \overrightarrow q - \overrightarrow r } \right)$$
Answer :   $$\frac{1}{2}\left( {\overrightarrow p + \overrightarrow q + \overrightarrow r } \right)$$
Solution :
Let $$\left| {\overrightarrow p } \right| = \left| {\overrightarrow q } \right| = \left| {\overrightarrow r } \right| = k$$
Let $$\hat p,\,\hat q,\,\hat r$$   be unit vectors along $$\overrightarrow p ,\,\overrightarrow q ,\,\overrightarrow r $$   respectively. Clearly $$\hat p,\,\hat q,\,\hat r$$   are mutually perpendicular vectors, so any vector $$\overrightarrow x $$ can be written as $${a_1}\hat p + {a_2}\hat q + {a_3}\hat r.$$
$$\eqalign{ & \therefore \,\overrightarrow p \times \left\{ {\left( {\overrightarrow x - \overrightarrow q } \right) \times \overrightarrow p } \right\} = \left( {\overrightarrow p .\overrightarrow p } \right)\left( {\overrightarrow x - \overrightarrow q } \right) - \left\{ {\overrightarrow {p.} \left( {\overrightarrow x - \overrightarrow q } \right)} \right\}\overrightarrow p \cr & = {k^2}\left( {\overrightarrow x - \overrightarrow q } \right) - \left( {\overrightarrow p .\overrightarrow x } \right)\overrightarrow p \,\,\,\,\,\,\,\,\,\left[ {\because \,\overrightarrow p .\overrightarrow q = 0} \right] \cr & = {k^2}\left( {\overrightarrow x - \overrightarrow q } \right) - k\hat p.\left( {{a_1}\hat p + {a_2}\hat q + {a_3}\hat r} \right)k\hat p \cr & = {k^2}\left( {\overrightarrow x - \overrightarrow q - {a_1}\hat p} \right) \cr & {\text{Similarly, }}\overrightarrow q \times \left\{ {\left( {\overrightarrow x - \overrightarrow r } \right) \times \overrightarrow q } \right\} = {k^2}\left( {\overrightarrow x - \overrightarrow r - {a_2}\hat q} \right) \cr & {\text{and }}\overrightarrow r \times \left\{ {\left( {\overrightarrow x - \overrightarrow p } \right) \times \overrightarrow r } \right\} = {k^2}\left( {\overrightarrow x - \overrightarrow p - {a_3}\hat r} \right) \cr} $$
According to the given condition
$$\eqalign{ & {k^2}\left( {\overrightarrow x - \overrightarrow q - {a_1}\hat p + \overrightarrow x - \overrightarrow r - {a_2}\hat q + \overrightarrow x - \overrightarrow p - {a_3}\hat r} \right) = 0 \cr & \Rightarrow {k^2}\left\{ {3\overrightarrow x - \left( {\overrightarrow p + \overrightarrow q + \overrightarrow r } \right) - \left( {{a_1}\hat p + {a_2}\hat q + {a_3}\hat r} \right)} \right\} = 0 \cr & \Rightarrow {k^2}\left[ {2\overrightarrow x - \left( {\overrightarrow p + \overrightarrow q + \overrightarrow r } \right)} \right] = \overrightarrow 0 \cr & \Rightarrow \overrightarrow x = \frac{1}{2}\overrightarrow {} \left( {\overrightarrow p + \overrightarrow q + \overrightarrow r } \right)\,\,\,\,\,\left[ {\because \,k \ne 0} \right] \cr} $$

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section