Question
Let $$p,q \in \left\{ {1,2,3,4} \right\}.$$ The number of equations of the form $$p{x^2} + qx + 1 = 0$$ having real roots is
A.
15
B.
9
C.
7
D.
8
Answer :
7
Solution :
For the equation $$p{x^2} + qx + 1 = 0$$ to have real roots
$$\eqalign{
& D \geqslant 0\,\,\,\,\,\,\,\,\,\, \Rightarrow \,\,{q^2} \geqslant 4p \cr
& {\text{If }}p = 1\,\,{\text{then }}{q^2} \geqslant 4 \cr
& \Rightarrow \,\,q = 2,3,4 \cr
& {\text{If }}p = 2\,\,{\text{then }}{q^2} \geqslant 8 \cr
& \Rightarrow \,\,q = 3,4 \cr
& {\text{If}}\,{\text{ }}p = 3\,\,{\text{then }}{q^2} \geqslant 12 \cr
& \Rightarrow \,\,q = 4 \cr
& {\text{If }}p = 4\,\,{\text{then }}{q^2} \geqslant 16 \cr
& \Rightarrow \,\,q = 4 \cr
& \therefore \,\,{\text{No}}{\text{. of req}}{\text{. equations}} = 7. \cr} $$