Question

Let $$P\left( {a\,\sec \,\theta ,\,b\,\tan \,\theta } \right)$$    and $$Q\left( {a\,\sec \,\phi ,\,b\,\tan \,\phi } \right),$$    where $$\theta + \phi = \frac{\pi }{2},$$   be two points on the hyperbola $$\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1.$$    If $$\left( {h,\,k} \right)$$  is the point of intersection of the normal at $$P$$ and $$Q,$$  then $$k$$ is equal to :

A. $$\frac{{{a^2} + {b^2}}}{a}$$
B. $$ - \left( {\frac{{{a^2} + {b^2}}}{a}} \right)$$
C. $$\frac{{{a^2} + {b^2}}}{b}$$
D. $$ - \left( {\frac{{{a^2} + {b^2}}}{b}} \right)$$  
Answer :   $$ - \left( {\frac{{{a^2} + {b^2}}}{b}} \right)$$
Solution :
KEY CONCEPT :
Equation of the normal to the hyperbola $$\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$$    at the point $$\left( {a\,\sec \,\alpha ,\,b\,\tan \,\alpha } \right)$$    is given by $$ax\,\cos \,\alpha + by\,\cot \,\alpha = {a^2} + {b^2}$$
Normal at $$\theta ,\,\phi $$  are \[\left\{ \begin{array}{l} ax\,\cos \,\theta + by\,\cot \,\theta = {a^2} + {b^2}\\ ax\,\cos \,\theta + by\,\cot \,\phi = {a^2} + {b^2} \end{array} \right.\]
where $$\phi = \frac{\pi }{2} - \theta $$   and these pass through $$\left( {h,\,k} \right)$$
$$\eqalign{ & \therefore ah\,\cos \,\theta + bk\,\cot \,\theta = {a^2} + {b^2} \cr & \,\,\,\,ah\,\sin \,\theta + bk\,\tan \,\theta = {a^2} + {b^2} \cr} $$
Eliminating $$h,\,bk\left( {\cot \,\theta \,\sin \,\theta - \tan \,\theta \cos \,\theta } \right)$$
$$ = \left( {{a^2} + {b^2}} \right)\left( {\sin \,\theta - \cos \,\theta } \right)\,\,\,\,{\text{or }}\,k = - \frac{{\left( {{a^2} + {b^2}} \right)}}{b}$$

Releted MCQ Question on
Geometry >> Hyperbola

Releted Question 1

Each of the four inequalities given below defines a region in the $$xy$$  plane. One of these four regions does not have the following property. For any two points $$\left( {{x_1},\,{y_1}} \right)$$  and $$\left( {{x_2},\,{y_2}} \right)$$  in the the region, the point $$\left( {\frac{{{x_1} + {x_2}}}{2},\,\frac{{{y_1} + {y_2}}}{2}} \right)$$    is also in the region. The inequality defining this region is :

A. $${x^2} + 2{y^2} \leqslant 1$$
B. $${\text{max }}\left\{ {\left| x \right|,\left| y \right|} \right\} \leqslant 1$$
C. $${x^2} - {y^2} \leqslant 1$$
D. $${y^2} - {x^2} \leqslant 0$$
Releted Question 2

Let $$P\left( {a\,\sec \,\theta ,\,b\,\tan \,\theta } \right)$$    and $$Q\left( {a\,\sec \,\phi ,\,b\,\tan \,\phi } \right),$$    where $$\theta + \phi = \frac{\pi }{2},$$   be two points on the hyperbola $$\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1.$$    If $$\left( {h,\,k} \right)$$  is the point of intersection of the normal at $$P$$ and $$Q,$$  then $$k$$ is equal to :

A. $$\frac{{{a^2} + {b^2}}}{a}$$
B. $$ - \left( {\frac{{{a^2} + {b^2}}}{a}} \right)$$
C. $$\frac{{{a^2} + {b^2}}}{b}$$
D. $$ - \left( {\frac{{{a^2} + {b^2}}}{b}} \right)$$
Releted Question 3

If $$x=9$$  is the chord of contact of the hyperbola $${x^2} - {y^2} = 9,$$   then the equation of the corresponding pair of tangents is :

A. $$9{x^2} - 8{y^2} + 18x - 9 = 0$$
B. $$9{x^2} - 8{y^2} - 18x + 9 = 0$$
C. $$9{x^2} - 8{y^2} - 18x - 9 = 0$$
D. $$9{x^2} - 8{y^2} + 18x + 9 = 0$$
Releted Question 4

For hyperbola $$\frac{{{x^2}}}{{{{\cos }^2}\alpha }} - \frac{{{y^2}}}{{{{\sin }^2}\alpha }} = 1,$$     which of the following remains constant with change in $$'\alpha \,'$$

A. abscissae of vertices
B. abscissae of foci
C. eccentricity
D. directrix

Practice More Releted MCQ Question on
Hyperbola


Practice More MCQ Question on Maths Section