Question

Let $$\vec p$$ and $$\vec q$$ be the position vectors of $$P$$ and $$Q$$ respectively, with respect to $$O$$ and $$\left| {\vec p} \right| = p,\,\left| {\vec q} \right| = q.$$    The points $$R$$ and $$S$$ divide $$PQ$$  internally and externally in the ratio 2 : 3 respectively. If $$OR$$  and $$OS$$  are perpendicular then :

A. $$9{p^2} = 4{q^2}$$  
B. $$4{p^2} = 9{q^2}$$
C. $$9p = 4q$$
D. $$4p = 9q$$
Answer :   $$9{p^2} = 4{q^2}$$
Solution :
We have $$\overrightarrow {OR} = \frac{{3\vec p + 2\vec q}}{{3 + 2}} = \frac{1}{2}\left( {3\vec p + 2\vec q} \right)\,\,\,\,\left[ {{\text{Internal division}}} \right]$$
and $$\overrightarrow {OS} = \frac{{3\vec p - 2\vec q}}{{3 - 2}} = 3\vec p - 2\vec q\,\,\,\,\left[ {{\text{External division}}} \right]$$
$$\eqalign{ & {\text{Given }}\overrightarrow {OR} \, \bot \,\overrightarrow {OS} \Rightarrow \overrightarrow {OR} \,.\,\overrightarrow {OS} = 0 \cr & \Rightarrow \frac{1}{5}\left[ {3\vec p + 2\vec q} \right].\left( {3\vec p - 2\vec q} \right) = 0 \cr & \Rightarrow 9{\left| {\vec p} \right|^2} = 4{\left| {\vec q} \right|^2} \cr & \Rightarrow 9{p^2} = 4{q^2} \cr} $$

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section