Question

Let $$p$$ and $$q$$ be real numbers such that $$p \ne 0,{p^3} \ne q\,\,{\text{and }}{p^3} \ne - q.$$     If $$\alpha \,\,{\text{and }}\beta $$  are non-zero complex numbers satisfying $$\alpha \,{\text{ + }}\,\beta = - p\,\,{\text{and}}\,\,{\alpha ^3} + {\beta ^3} = q,$$      then a quadratic equation having $$\frac{\alpha }{\beta }\,\,{\text{and }}\frac{\beta }{\alpha }$$  as its roots is

A. $$\left( {{p^3} + q} \right){x^2} - \left( {{p^3} + 2q} \right)x + \left( {{p^3} + q} \right) = 0$$
B. $$\left( {{p^3} + q} \right){x^2} - \left( {{p^3} - 2q} \right)x + \left( {{p^3} + q} \right) = 0$$  
C. $$\left( {{p^3} - q} \right){x^2} - \left( {5{p^3} - 2q} \right)x + \left( {{p^3} - q} \right) = 0$$
D. $$\left( {{p^3} - q} \right){x^2} - \left( {5{p^3} + 2q} \right)x + \left( {{p^3} - q} \right) = 0$$
Answer :   $$\left( {{p^3} + q} \right){x^2} - \left( {{p^3} - 2q} \right)x + \left( {{p^3} + q} \right) = 0$$
Solution :
Given that
$$\eqalign{ & \alpha {\text{ + }}\beta = - p\,\,{\text{and }}{\alpha ^3} + {\beta ^3} = q \cr & \Rightarrow \,\,{\left( {\alpha + \beta } \right)^3} - 3\alpha \beta \left( {\alpha + \beta } \right) = q \cr & \Rightarrow \,\, - {p^3} - 3\alpha \beta \left( { - p} \right) = q \cr & \Rightarrow \,\,\alpha \beta = \frac{{{p^3} + q}}{{3p}} \cr} $$
Now for required quadratic equation,
sum of roots $$ = \frac{\alpha }{\beta } + \frac{\beta }{\alpha } = \frac{{{\alpha ^2} + {\beta ^2}}}{{\alpha \beta }}$$
$$\eqalign{ & = \frac{{{{\left( {\alpha + \beta } \right)}^2} - 2\alpha \beta }}{{\alpha \beta }} \cr & = \frac{{{p^2} - 2\left( {\frac{{{p^3} + q}}{{3p}}} \right)}}{{\frac{{{p^3} + q}}{{3p}}}} \cr & = \,\frac{{3{p^3} - 2{p^3} - 2q}}{{{p^3} + q}} \cr & = \frac{{{p^3} - 2q}}{{{p^3} + q}} \cr} $$
and product of roots $$ = \frac{\alpha }{\beta }.\frac{\beta }{\alpha } = 1$$
∴ Required equation is $${x^2} - \left( {\frac{{{p^3} - 2q}}{{{p^3} + q}}} \right)x + 1 = 0$$
or $$\left( {{p^3} + q} \right){x^2} - \left( {{p^3} - 2q} \right)x + \left( {{p^3} + q} \right) = 0$$

Releted MCQ Question on
Algebra >> Quadratic Equation

Releted Question 1

If $$\ell ,m,n$$  are real, $$\ell \ne m,$$  then the roots by the equation: $$\left( {\ell - m} \right){x^2} - 5\left( {\ell + m} \right)x - 2\left( {\ell - m} \right) = 0$$         are

A. Real and equal
B. Complex
C. Real and unequal
D. None of these
Releted Question 2

The equation $$x + 2y + 2z = 1{\text{ and }}2x + 4y + 4z = 9{\text{ have}}$$

A. Only one solution
B. Only two solutions
C. Infinite number of solutions
D. None of these
Releted Question 3

Let $$a > 0, b > 0$$    and $$c > 0$$ . Then the roots of the equation $$a{x^2} + bx + c = 0$$

A. are real and negative
B. have negative real parts
C. both (A) and (B)
D. none of these
Releted Question 4

Both the roots of the equation $$\left( {x - b} \right)\left( {x - c} \right) + \left( {x - a} \right)\left( {x - c} \right) + \left( {x - a} \right)\left( {x - b} \right) = 0$$           are always

A. positive
B. real
C. negative
D. none of these.

Practice More Releted MCQ Question on
Quadratic Equation


Practice More MCQ Question on Maths Section