Question

Let $$P\left( {6,\,3} \right)$$   be a point on the hyperbola $$\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1.$$    If the normal at the point $$P$$ intersects the $$x$$-axis at $$\left( {9,\,0} \right),$$  then the eccentricity of the hyperbola is :

A. $$\sqrt {\frac{5}{2}} $$
B. $$\sqrt {\frac{3}{2}} $$  
C. $$\sqrt 2 $$
D. $$\sqrt 3 $$
Answer :   $$\sqrt {\frac{3}{2}} $$
Solution :
For hyperbola $$\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1,$$    we have
$$\frac{{2x}}{{{a^2}}} - \frac{{2y}}{{{b^2}}}\frac{{dy}}{{dx}} = 0\,\,\, \Rightarrow \frac{{dy}}{{dx}} = \frac{{{b^2}x}}{{{a^2}y}}$$
$$\therefore $$ Slope of normal at $$P\left( {6,\,3} \right)$$
$$ = - \frac{1}{{{{\left( {\frac{{dy}}{{dx}}} \right)}_{\left( {6,\,3} \right)}}}} = - \frac{{3{a^2}}}{{6{b^2}}}$$
$$\therefore $$ Equation of normal is $$\frac{{y - 3}}{{x - 6}} = - \frac{{3{a^2}}}{{6{b^2}}}$$
As it intersects $$x$$-axis at $$\left( {9,\,0} \right)$$
$$\therefore \frac{{0 - 3}}{{9 - 6}} = \frac{{ - 3{a^2}}}{{6{b^2}}}\,\,\, \Rightarrow {a^2} = 2{b^2}.....(1)$$
Also for hyperbola, $${b^2} = {a^2}\left( {{e^2} - 1} \right)$$
Using $${a^2} = 2{b^2};$$   we get
$$\eqalign{ & {b^2} = 2{b^2}\left( {{e^2} - 1} \right) \cr & \frac{1}{2} = {e^2} - 1 \cr & {\text{or,}}\,\,{e^2} = \frac{3}{2} \cr & {\text{or,}}\,\,e = \sqrt {\frac{3}{2}} \cr} $$

Releted MCQ Question on
Geometry >> Hyperbola

Releted Question 1

Each of the four inequalities given below defines a region in the $$xy$$  plane. One of these four regions does not have the following property. For any two points $$\left( {{x_1},\,{y_1}} \right)$$  and $$\left( {{x_2},\,{y_2}} \right)$$  in the the region, the point $$\left( {\frac{{{x_1} + {x_2}}}{2},\,\frac{{{y_1} + {y_2}}}{2}} \right)$$    is also in the region. The inequality defining this region is :

A. $${x^2} + 2{y^2} \leqslant 1$$
B. $${\text{max }}\left\{ {\left| x \right|,\left| y \right|} \right\} \leqslant 1$$
C. $${x^2} - {y^2} \leqslant 1$$
D. $${y^2} - {x^2} \leqslant 0$$
Releted Question 2

Let $$P\left( {a\,\sec \,\theta ,\,b\,\tan \,\theta } \right)$$    and $$Q\left( {a\,\sec \,\phi ,\,b\,\tan \,\phi } \right),$$    where $$\theta + \phi = \frac{\pi }{2},$$   be two points on the hyperbola $$\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1.$$    If $$\left( {h,\,k} \right)$$  is the point of intersection of the normal at $$P$$ and $$Q,$$  then $$k$$ is equal to :

A. $$\frac{{{a^2} + {b^2}}}{a}$$
B. $$ - \left( {\frac{{{a^2} + {b^2}}}{a}} \right)$$
C. $$\frac{{{a^2} + {b^2}}}{b}$$
D. $$ - \left( {\frac{{{a^2} + {b^2}}}{b}} \right)$$
Releted Question 3

If $$x=9$$  is the chord of contact of the hyperbola $${x^2} - {y^2} = 9,$$   then the equation of the corresponding pair of tangents is :

A. $$9{x^2} - 8{y^2} + 18x - 9 = 0$$
B. $$9{x^2} - 8{y^2} - 18x + 9 = 0$$
C. $$9{x^2} - 8{y^2} - 18x - 9 = 0$$
D. $$9{x^2} - 8{y^2} + 18x + 9 = 0$$
Releted Question 4

For hyperbola $$\frac{{{x^2}}}{{{{\cos }^2}\alpha }} - \frac{{{y^2}}}{{{{\sin }^2}\alpha }} = 1,$$     which of the following remains constant with change in $$'\alpha \,'$$

A. abscissae of vertices
B. abscissae of foci
C. eccentricity
D. directrix

Practice More Releted MCQ Question on
Hyperbola


Practice More MCQ Question on Maths Section