Question

Let $$P = \,\left( { - 1,\,0} \right),\,Q = \left( {0,\,0} \right)$$     and $$R = \left( {3,\,3\sqrt 3 } \right)$$   be three point. The equation of the bisector of the angle $$PQR$$  is-

A. $$\frac{{\sqrt 3 }}{2}x + y = 0$$
B. $$x + \sqrt {3y} = 0$$
C. $$\sqrt 3 x + y = 0$$  
D. $$x + \frac{{\sqrt 3 }}{2}y = 0$$
Answer :   $$\sqrt 3 x + y = 0$$
Solution :
Given : The coordinates of points $$P, \,Q, \,R$$   are $$\left( { - 1,\,0} \right),\,\left( {0,\,0} \right),\,\left( {3,\,3\sqrt 3 } \right)$$     respectively.
Straight Lines mcq solution image
$$\eqalign{ & {\text{Slope of }}QR = \frac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}} = \frac{{3\sqrt 3 }}{3} \cr & \Rightarrow \tan \,\theta = \sqrt 3 \cr & \Rightarrow \theta = \frac{\pi }{3} \cr & \Rightarrow \angle RQX = \frac{\pi }{3} \cr & \therefore \angle RQP = \pi - \frac{\pi }{3} = \frac{{2\pi }}{3} \cr} $$
Let $$QM$$  bisects the $$\angle PQR,$$
$$\therefore $$ Slope of the line $$QM = \tan \frac{{2\pi }}{3} = - \sqrt 3 $$
$$\therefore $$ Equation of line $$QM$$  is $$\left( {y - 0} \right) = - \sqrt 3 \left( {x - 0} \right)$$
$$\eqalign{ & \Rightarrow y = - \sqrt 3 x\,\, \cr & \Rightarrow \sqrt 3 \,x + y = 0 \cr} $$

Releted MCQ Question on
Geometry >> Straight Lines

Releted Question 1

The points $$\left( { - a, - b} \right),\left( {0,\,0} \right),\left( {a,\,b} \right)$$     and $$\left( {{a^2},\,ab} \right)$$  are :

A. Collinear
B. Vertices of a parallelogram
C. Vertices of a rectangle
D. None of these
Releted Question 2

The point (4, 1) undergoes the following three transformations successively.
(i) Reflection about the line $$y =x.$$
(ii) Translation through a distance 2 units along the positive direction of $$x$$-axis.
(iii) Rotation through an angle $$\frac{p}{4}$$ about the origin in the counter clockwise direction.
Then the final position of the point is given by the coordinates.

A. $$\left( {\frac{1}{{\sqrt 2 }},\,\frac{7}{{\sqrt 2 }}} \right)$$
B. $$\left( { - \sqrt 2 ,\,7\sqrt 2 } \right)$$
C. $$\left( { - \frac{1}{{\sqrt 2 }},\,\frac{7}{{\sqrt 2 }}} \right)$$
D. $$\left( {\sqrt 2 ,\,7\sqrt 2 } \right)$$
Releted Question 3

The straight lines $$x + y= 0, \,3x + y-4=0,\,x+ 3y-4=0$$         form a triangle which is-

A. isosceles
B. equilateral
C. right angled
D. none of these
Releted Question 4

If $$P = \left( {1,\,0} \right),\,Q = \left( { - 1,\,0} \right)$$     and $$R = \left( {2,\,0} \right)$$  are three given points, then locus of the point $$S$$ satisfying the relation $$S{Q^2} + S{R^2} = 2S{P^2},$$    is-

A. a straight line parallel to $$x$$-axis
B. a circle passing through the origin
C. a circle with the centre at the origin
D. a straight line parallel to $$y$$-axis

Practice More Releted MCQ Question on
Straight Lines


Practice More MCQ Question on Maths Section