Question

Let $$OP \cdot OQ = 1$$   and let $$O, P, Q$$  be three collinear points. If $$O$$ and $$Q$$ represent the complex numbers $$0$$ and $$z$$ then $$P$$ represents

A. $$\frac{1}{z}$$
B. $${\overline z }$$
C. $$\frac{1}{{\overline z }}$$  
D. None of these
Answer :   $$\frac{1}{{\overline z }}$$
Solution :
Complex Number mcq solution image
$$\eqalign{ & {\text{Here, }}\left| {0 - {z_1}} \right|\left| {0 - z} \right| = 1. \cr & \therefore \,\,\left| {{z_1}} \right|\left| z \right| = 1 \cr & \therefore \,\,\left| {{z_1}} \right| = \frac{1}{{\left| z \right|}}. \cr & {\text{Also, amp}}\frac{{{z_1} - 0}}{{z - 0}} = 0\,\,\,\,\,\therefore \,\,{\text{amp}}\frac{{{z_1}}}{z} = 0\,\,\,\,\therefore \,\,{\text{amp}}\,{z_1} = {\text{amp }}z. \cr & \therefore \,\,{z_1} = \frac{1}{{\left| z \right|}}\left\{ {\cos \left( {{\text{amp }}{z_1}} \right) + i\sin \left( {{\text{amp }}{z_1}} \right)} \right\} \cr & {z_1} = \frac{1}{{{{\left| z \right|}^2}}} \cdot \left| z \right|\left\{ {\cos \left( {{\text{amp }}z} \right) + i\sin \left( {{\text{amp }}z} \right)} \right\} \cr & {z_1} = \frac{1}{{{{\left| z \right|}^2}}} \cdot z = \frac{z}{{z\overline z }} = \frac{1}{{\overline z }}. \cr} $$

Releted MCQ Question on
Algebra >> Complex Number

Releted Question 1

If the cube roots of unity are $$1,\omega ,{\omega ^2},$$  then the roots of the equation $${\left( {x - 1} \right)^3} + 8 = 0\,\,{\text{are}}$$

A. $$ - 1,1 + 2\omega ,1 + 2{\omega ^2}$$
B. $$ - 1,1 - 2\omega ,1 - 2{\omega ^2}$$
C. $$- 1, - 1, - 1$$
D. none of these
Releted Question 2

The smallest positive integer $$n$$ for which $${\left( {\frac{{1 + i}}{{1 - i}}} \right)^n} = 1\,{\text{is}}$$

A. $$n = 8$$
B. $$n = 16$$
C. $$n = 12$$
D. none of these
Releted Question 3

The complex numbers $$z = x+ iy$$   which satisfy the equation $$\left| {\frac{{z - 5i}}{{z + 5i}}} \right| = 1$$   lie on

A. the $$x$$ - axis
B. the straight line $$y = 5$$
C. a circle passing through the origin
D. none of these
Releted Question 4

If $$z = {\left( {\frac{{\sqrt 3 }}{2} + \frac{i}{2}} \right)^5} + {\left( {\frac{{\sqrt 3 }}{2} - \frac{i}{2}} \right)^5},\,{\text{then}}$$

A. $${\text{Re}}\left( z \right) = 0$$
B. $${\text{Im}}\left( z \right) = 0$$
C. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) > 0$$
D. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) < 0$$

Practice More Releted MCQ Question on
Complex Number


Practice More MCQ Question on Maths Section