Question

Let $$\omega = - \frac{1}{2} + i\frac{{\sqrt 3 }}{2},$$    then the value of the det.
\[\left| \begin{array}{l} 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,1\\ 1\,\,\,\,\, - 1 - {\omega ^2}\,\,\,\,\,\,\,\,{\omega ^2}\,\,\\ 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\omega ^2}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\omega ^4} \end{array} \right|\]     is

A. $$3\omega $$
B. $$3\omega \left( {\omega - 1} \right)$$  
C. $$3{\omega ^2}$$
D. $$3\omega \left( {1 - \omega } \right)$$
Answer :   $$3\omega \left( {\omega - 1} \right)$$
Solution :
Operating $${R_1} + {R_2} + {R_3},$$   we get
\[\left| \begin{array}{l} 1\,\,\,\,\,\,\,\,\,\,\,\,1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,1\\ 1\,\,\,\,\, - 1 - {\omega ^2}\,\,\,\,\,\,\,{\omega ^2}\,\,\\ 1\,\,\,\,\,\,\,\,\,\,{\omega ^2}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\omega ^4} \end{array} \right|\]
$$\eqalign{ & = 3\left[ { - \omega - 1 - \omega } \right] \cr & = 3\left( {{\omega ^2} - \omega } \right) \cr} $$

Releted MCQ Question on
Algebra >> Complex Number

Releted Question 1

If the cube roots of unity are $$1,\omega ,{\omega ^2},$$  then the roots of the equation $${\left( {x - 1} \right)^3} + 8 = 0\,\,{\text{are}}$$

A. $$ - 1,1 + 2\omega ,1 + 2{\omega ^2}$$
B. $$ - 1,1 - 2\omega ,1 - 2{\omega ^2}$$
C. $$- 1, - 1, - 1$$
D. none of these
Releted Question 2

The smallest positive integer $$n$$ for which $${\left( {\frac{{1 + i}}{{1 - i}}} \right)^n} = 1\,{\text{is}}$$

A. $$n = 8$$
B. $$n = 16$$
C. $$n = 12$$
D. none of these
Releted Question 3

The complex numbers $$z = x+ iy$$   which satisfy the equation $$\left| {\frac{{z - 5i}}{{z + 5i}}} \right| = 1$$   lie on

A. the $$x$$ - axis
B. the straight line $$y = 5$$
C. a circle passing through the origin
D. none of these
Releted Question 4

If $$z = {\left( {\frac{{\sqrt 3 }}{2} + \frac{i}{2}} \right)^5} + {\left( {\frac{{\sqrt 3 }}{2} - \frac{i}{2}} \right)^5},\,{\text{then}}$$

A. $${\text{Re}}\left( z \right) = 0$$
B. $${\text{Im}}\left( z \right) = 0$$
C. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) > 0$$
D. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) < 0$$

Practice More Releted MCQ Question on
Complex Number


Practice More MCQ Question on Maths Section