Question

Let $$O$$ be the origin and let $$PQR$$  be an arbitrary triangle. The point $$S$$ is such that $$\overrightarrow {OP} .\overrightarrow {OQ} + \overrightarrow {OR} .\overrightarrow {OS} = \overrightarrow {OR} .\overrightarrow {OP} + \overrightarrow {OQ} .\overrightarrow {OS} = \overrightarrow {OQ} .\overrightarrow {OR} + \overrightarrow {OP} .\overrightarrow {OS} $$
Then the triangle $$PQR$$  has $$S$$ as its :

A. Centroid
B. Circumcenter
C. Incentre
D. Orthocenter  
Answer :   Orthocenter
Solution :
$$\eqalign{ & \overrightarrow {OP} .\overrightarrow {OQ} + \overrightarrow {OR} .\overrightarrow {OS} = \overrightarrow {OR} .\overrightarrow {OP} + \overrightarrow {OQ} .\overrightarrow {OS} \cr & \Rightarrow \left( {\overrightarrow {OQ} - \overrightarrow {OR} } \right).\overrightarrow {OP} - \left( {\overrightarrow {OQ} - \overrightarrow {OR} } \right).\overrightarrow {OS} = 0 \cr & \Rightarrow \left( {\overrightarrow {OQ} - \overrightarrow {OR} } \right).\left( {\overrightarrow {OP} - \overrightarrow {OS} } \right) = 0 \cr & \Rightarrow \overrightarrow {RQ} .\overrightarrow {SP} = 0 \cr & \Rightarrow RQ\, \bot \,SP.....(1) \cr & {\text{Also }}\overrightarrow {OR} .\overrightarrow {OP} + \overrightarrow {OQ} .\overrightarrow {OS} = \overrightarrow {OQ} .\overrightarrow {OR} + \overrightarrow {OP} .\overrightarrow {OS} \cr & \Rightarrow \overrightarrow {OR} .\left( {\overrightarrow {OP} - \overrightarrow {OQ} } \right) - \overrightarrow {OS} .\left( {\overrightarrow {OP} - \overrightarrow {OQ} } \right) = 0 \cr & \Rightarrow \left( {\overrightarrow {OP} - \overrightarrow {OQ} } \right).\left( {\overrightarrow {OR} - \overrightarrow {OS} } \right) = 0 \cr & \Rightarrow \overrightarrow {QP} .\overrightarrow {SR} = 0 \cr & \Rightarrow QP\, \bot \,SR.....(2) \cr} $$
From (1) and (2) $$S$$ should be the orthocenter of $$\Delta PQR.$$

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section