Question

Let $$n$$ be a positive integer such that $$\sin \frac{\pi }{{2n}} + \cos \frac{\pi }{{2n}} = \frac{{\sqrt n }}{2}.$$     Then

A. $$6 \leqslant n \leqslant 8$$
B. $$4 < n \leqslant 8$$
C. $$4 \leqslant n \leqslant 8$$
D. $$4 < n < 8$$  
Answer :   $$4 < n < 8$$
Solution :
$$\eqalign{ & \sin \frac{\pi }{{2n}} + \cos \frac{\pi }{{2n}} = \frac{{\sqrt n }}{2} \cr & \Rightarrow \,\,{\sin ^2}\frac{\pi }{{2n}} + {\cos ^2}\frac{\pi }{{2n}} + 2\sin \frac{\pi }{{2n}}\cos \frac{\pi }{{2n}} = \frac{n}{4} \cr & \Rightarrow \,\,1 + \sin \frac{\pi }{4} = \frac{n}{4} \cr & \Rightarrow \,\,\sin \frac{\pi }{4} = \frac{{n - 4}}{4} \cr} $$
For $$n = 2$$  the given equation is not satisfied.
Considering $$n > 1$$  and $$n \ne 2$$
$$\eqalign{ & 0 < \sin \frac{\pi }{4} < 1 \cr & \Rightarrow \,\,0 < \frac{{n - 4}}{4} < 1 \cr & \Rightarrow \,\,4 < n < 8. \cr} $$

Releted MCQ Question on
Trigonometry >> Trigonometric Ratio and Identities

Releted Question 1

If $$\tan \theta = - \frac{4}{3},$$   then $$\sin \theta $$  is

A. $$ - \frac{4}{5}{\text{ but not }}\frac{4}{5}$$
B. $$ - \frac{4}{5}{\text{ or }}\frac{4}{5}$$
C. $$ \frac{4}{5}{\text{ but not }} - \frac{4}{5}$$
D. None of these
Releted Question 2

If $$\alpha + \beta + \gamma = 2\pi ,$$    then

A. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
B. $$\tan \frac{\alpha }{2}\tan \frac{\beta }{2} + \tan \frac{\beta }{2}\tan \frac{\gamma }{2} + \tan \frac{\gamma }{2}\tan \frac{\alpha }{2} = 1$$
C. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = - \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
D. None of these
Releted Question 3

Given $$A = {\sin ^2}\theta + {\cos ^4}\theta $$    then for all real values of $$\theta $$

A. $$1 \leqslant A \leqslant 2$$
B. $$\frac{3}{4} \leqslant A \leqslant 1$$
C. $$\frac{13}{16} \leqslant A \leqslant 1$$
D. $$\frac{3}{4} \leqslant A \leqslant \frac{{13}}{{16}}$$
Releted Question 4

The value of the expression $$\sqrt 3 \,{\text{cosec}}\,{\text{2}}{{\text{0}}^ \circ } - \sec {20^ \circ }$$     is equal to

A. 2
B. $$\frac{{2\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$
C. 4
D. $$\frac{{4\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$

Practice More Releted MCQ Question on
Trigonometric Ratio and Identities


Practice More MCQ Question on Maths Section