Question

Let $$\lambda \in {\bf{R}}.$$  If the origin and the non real roots of $$2z^2 + 2z + \lambda = 0$$    form the three vertices of an equilateral triangle in the argand plane. Then $$\lambda$$ is

A. $$1$$
B. $$\frac{2}{3}$$  
C. $$2$$
D. $$- 1$$
Answer :   $$\frac{2}{3}$$
Solution :
For the non-real roots of the equation $$2{z^2} + 2z + \lambda = 0\,\,\,\,\,.....\left( {\text{i}} \right)$$
$$\eqalign{ & {\text{discriminant}} < 0. \cr & {\text{That}}\,{\text{is}}\,\,4 - 8\lambda < 0 \cr & \Rightarrow \,\lambda > \frac{1}{2}\,\,\,\,\,.....\left( {{\text{ii}}} \right) \cr} $$
Let the roots of (i) be $${z_1}\,\,\& \,\,{z_2}$$
$${\text{Then}}\,\,{z_1} + {z_2} = - \frac{2}{2} = - 1,\,{z_1}{z_2} = \frac{\lambda }{2}$$
$$\eqalign{ & {z^2} + z_2^2 - {z_1}{z_2} = 0 \cr & \Rightarrow \,{\left( {{z_1} + {z_2}} \right)^2} = 3{z_1}{z_2} \cr & \Rightarrow \,{\left( { - 1} \right)^2} = 3\frac{\lambda }{2} \cr & \Rightarrow \,\lambda = \frac{2}{3} \cr} $$
$$\lambda = \frac{2}{3}\left( { > \frac{1}{2}} \right)$$   satisfies the condition (ii).
Hence, it is the required result.

Releted MCQ Question on
Algebra >> Complex Number

Releted Question 1

If the cube roots of unity are $$1,\omega ,{\omega ^2},$$  then the roots of the equation $${\left( {x - 1} \right)^3} + 8 = 0\,\,{\text{are}}$$

A. $$ - 1,1 + 2\omega ,1 + 2{\omega ^2}$$
B. $$ - 1,1 - 2\omega ,1 - 2{\omega ^2}$$
C. $$- 1, - 1, - 1$$
D. none of these
Releted Question 2

The smallest positive integer $$n$$ for which $${\left( {\frac{{1 + i}}{{1 - i}}} \right)^n} = 1\,{\text{is}}$$

A. $$n = 8$$
B. $$n = 16$$
C. $$n = 12$$
D. none of these
Releted Question 3

The complex numbers $$z = x+ iy$$   which satisfy the equation $$\left| {\frac{{z - 5i}}{{z + 5i}}} \right| = 1$$   lie on

A. the $$x$$ - axis
B. the straight line $$y = 5$$
C. a circle passing through the origin
D. none of these
Releted Question 4

If $$z = {\left( {\frac{{\sqrt 3 }}{2} + \frac{i}{2}} \right)^5} + {\left( {\frac{{\sqrt 3 }}{2} - \frac{i}{2}} \right)^5},\,{\text{then}}$$

A. $${\text{Re}}\left( z \right) = 0$$
B. $${\text{Im}}\left( z \right) = 0$$
C. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) > 0$$
D. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) < 0$$

Practice More Releted MCQ Question on
Complex Number


Practice More MCQ Question on Maths Section