Question

Let $$L$$ be the line of intersection of the planes $$2x+3y+z=1$$   and $$x+3y+2z=2.$$    If $$L$$ makes an angle $$\alpha $$ with the positive $$x$$-axis, then $$\cos \,\alpha $$  equals :

A. $$1$$
B. $$\frac{1}{{\sqrt 2 }}$$
C. $$\frac{1}{{\sqrt 3 }}$$  
D. $$\frac{1}{2}$$
Answer :   $$\frac{1}{{\sqrt 3 }}$$
Solution :
Let the direction cosines of line $$L$$ be $$l,\,m,\,n$$   then
$$2l + 3m + n = 0.....({\text{i}})$$
and $$l + 3m + 2n = 0.....({\text{ii}})$$
on solving equation (i) and (ii), we get
$$\frac{l}{{6 - 3}} = \frac{m}{{1 - 4}} = \frac{n}{{6 - 3}}\,\,\, \Rightarrow \frac{l}{3} = \frac{m}{{ - 3}} = \frac{n}{3}$$
$$\eqalign{ & {\text{Now }}\frac{l}{3} = \frac{m}{{ - 3}} = \frac{n}{3} = \frac{{\sqrt {{l^2} + {m^2} + {n^2}} }}{{\sqrt {{3^2} + {{\left( { - 3} \right)}^2} + {3^2}} }} \cr & \because \,{l^2} + {m^2} + {n^2} = 1 \cr & \therefore \,\frac{l}{3} = \frac{m}{{ - 3}} = \frac{n}{3} = \frac{1}{{\sqrt {27} }} \cr & \Rightarrow l = \frac{3}{{\sqrt {27} }} = \frac{1}{{\sqrt 3 }},\,\,m = - \frac{1}{{\sqrt 3 }},\,\,n = \frac{1}{{\sqrt 3 }} \cr} $$
Line $$L,$$  makes an angle $$\alpha $$ with $$+ve\, x$$ -axis
$$\therefore l = \cos \,\alpha \,\,\,\, \Rightarrow \cos \,\alpha = \frac{1}{{\sqrt 3 }}$$

Releted MCQ Question on
Geometry >> Three Dimensional Geometry

Releted Question 1

The value of $$k$$ such that $$\frac{{x - 4}}{1} = \frac{{y - 2}}{1} = \frac{{z - k}}{2}$$     lies in the plane $$2x - 4y + z = 7,$$    is :

A. $$7$$
B. $$ - 7$$
C. no real value
D. $$4$$
Releted Question 2

If the lines $$\frac{{x - 1}}{2} = \frac{{y + 1}}{3} = \frac{{z - 1}}{4}$$      and $$\frac{{x - 3}}{1} = \frac{{y - k}}{2} = \frac{z}{1}$$     intersect, then the value of $$k$$ is :

A. $$\frac{3}{2}$$
B. $$\frac{9}{2}$$
C. $$ - \frac{2}{9}$$
D. $$ - \frac{3}{2}$$
Releted Question 3

A plane which is perpendicular to two planes $$2x - 2y + z = 0$$    and $$x - y + 2z = 4,$$    passes through $$\left( {1,\, - 2,\,1} \right).$$   The distance of the plane from the point $$\left( {1,\,2,\,2} \right)$$  is :

A. $$0$$
B. $$1$$
C. $$\sqrt 2 $$
D. $$2\sqrt 2 $$
Releted Question 4

Let $$P\left( {3,\,2,\,6} \right)$$   be a point in space and $$Q$$ be a point on the line $$\vec r = \left( {\hat i - \hat j + 2\hat k} \right) + \mu \left( { - 3\hat i + \hat j + 5\hat k} \right)$$
Then the value of $$\mu $$ for which the vector $$\overrightarrow {PQ} $$  is parallel to the plane $$x-4y+3z=1$$    is :

A. $$\frac{1}{4}$$
B. $$ - \frac{1}{4}$$
C. $$\frac{1}{8}$$
D. $$ - \frac{1}{8}$$

Practice More Releted MCQ Question on
Three Dimensional Geometry


Practice More MCQ Question on Maths Section