Question

Let $$I = \int_{ - a}^a {\left( {p{{\tan }^3}x + q{{\cos }^2}x + r\sin \,x} \right)dx,} $$        where $$p,\,q,\,r$$   are arbitrary constants. The numerical value of $$I$$ depends on :

A. $$p,\,q,\,r,\,a$$
B. $$q,\,r,\,a$$
C. $$q,\,a$$  
D. $$p,\,r,\,a$$
Answer :   $$q,\,a$$
Solution :
$$I = p\int_{ - a}^a {{{\tan }^3}x\,dx} + q\int_{ - a}^a {{{\cos }^2}x\,dx} + r\int_{ - a}^a {\sin \,x\,dx} $$
$$ = p \times 0 + 2q\int_0^a {{{\cos }^2}x\,dx} + r \times 0,$$        because $${\tan ^3}x$$  and $$\sin \,x$$  are odd functions, and $${\cos ^2}x$$  is an even function.

Releted MCQ Question on
Calculus >> Application of Integration

Releted Question 1

The area bounded by the curves $$y = f\left( x \right),$$   the $$x$$-axis and the ordinates $$x = 1$$  and $$x = b$$  is $$\left( {b - 1} \right)\sin \left( {3b + 4} \right).$$     Then $$f\left( x \right)$$  is-

A. $$\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
B. $$\sin \,\left( {3x + 4} \right)$$
C. $$\sin \,\left( {3x + 4} \right) + 3\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
D. none of these
Releted Question 2

The area bounded by the curves $$y = \left| x \right| - 1$$   and $$y = - \left| x \right| + 1$$   is-

A. $$1$$
B. $$2$$
C. $$2\sqrt 2 $$
D. $$4$$
Releted Question 3

The area bounded by the curves $$y = \sqrt x ,\,2y + 3 = x$$    and $$x$$-axis in the 1st quadrant is-

A. $$9$$
B. $$\frac{{27}}{4}$$
C. $$36$$
D. $$18$$
Releted Question 4

The area enclosed between the curves $$y = a{x^2}$$   and $$x = a{y^2}\left( {a > 0} \right)$$    is 1 sq. unit, then the value of $$a$$ is-

A. $$\frac{1}{{\sqrt 3 }}$$
B. $$\frac{1}{2}$$
C. $$1$$
D. $$\frac{1}{3}$$

Practice More Releted MCQ Question on
Application of Integration


Practice More MCQ Question on Maths Section