Question

Let $$I = \int\limits_0^1 {\frac{{\sin \,x}}{{\sqrt x }}dx} $$    and $$J = \int\limits_0^1 {\frac{{\cos \,x}}{{\sqrt x }}dx.} $$    Then which one of the following is true?

A. $$I > \frac{2}{3}{\text{ and }}J > 2$$
B. $$I < \frac{2}{3}{\text{ and }}J < 2$$  
C. $$I < \frac{2}{3}{\text{ and }}J > 2$$
D. $$I > \frac{2}{3}{\text{ and }}J < 2$$
Answer :   $$I < \frac{2}{3}{\text{ and }}J < 2$$
Solution :
$$\eqalign{ & {\text{We know that }}\frac{{\sin \,x}}{x} < 1,\,{\text{for }}x\, \in \left( {0,\,1} \right) \cr & \Rightarrow \frac{{\sin \,x}}{{\sqrt x }} < \sqrt x {\text{ on }}x\, \in \left( {0,\,1} \right) \cr & \Rightarrow \int\limits_0^1 {\frac{{\sin \,x}}{{\sqrt x }}dx < } \int\limits_0^1 {\sqrt x \,dx = \left[ {\frac{{2{x^{\frac{3}{2}}}}}{3}} \right]_0^1} \cr & \Rightarrow \int\limits_0^1 {\frac{{\sin \,x}}{{\sqrt x }}dx < } \frac{2}{3} \cr & \Rightarrow I < \frac{2}{3}{\text{ Also }}\frac{{\cos \,x}}{{\sqrt x }} < \frac{1}{{\sqrt x }}\,\,{\text{for }}x\, \in \left( {0,\,1} \right) \cr & \Rightarrow \int\limits_0^1 {\frac{{\cos \,x}}{{\sqrt x }}dx < \int\limits_0^1 {{x^{ - \frac{1}{2}}}} dx = \left[ {2\sqrt x } \right]_0^1 = 2} \cr & \Rightarrow \int\limits_0^1 {\frac{{\cos \,x}}{{\sqrt x }}dx < 2} \,\,\, \Rightarrow J < 2 \cr} $$

Releted MCQ Question on
Calculus >> Definite Integration

Releted Question 1

The value of the definite integral $$\int\limits_0^1 {\left( {1 + {e^{ - {x^2}}}} \right)} \,dx$$     is-

A. $$ - 1$$
B. $$2$$
C. $$1 + {e^{ - 1}}$$
D. none of these
Releted Question 2

Let $$a,\,b,\,c$$   be non-zero real numbers such that $$\int\limits_0^1 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx = } \int\limits_0^2 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx.} $$
Then the quadratic equation $$a{x^2} + bx + c = 0$$     has-

A. no root in $$\left( {0,\,2} \right)$$
B. at least one root in $$\left( {0,\,2} \right)$$
C. a double root in $$\left( {0,\,2} \right)$$
D. two imaginary roots
Releted Question 3

The value of the integral $$\int\limits_0^{\frac{\pi }{2}} {\frac{{\sqrt {\cot \,x} }}{{\sqrt {\cot \,x} + \sqrt {\tan \,x} }}dx} $$     is-

A. $$\frac{\pi }{4}$$
B. $$\frac{\pi }{2}$$
C. $$\pi $$
D. none of these
Releted Question 4

For any integer $$n$$ the integral $$\int\limits_0^\pi {{e^{{{\cos }^2}x}}} {\cos ^3}\left( {2n + 1} \right)xdx$$     has the value-

A. $$\pi $$
B. $$1$$
C. $$0$$
D. none of these

Practice More Releted MCQ Question on
Definite Integration


Practice More MCQ Question on Maths Section