Solution :
Let the equation of any line passing through $$A\left( {h,\,k} \right){\text{ be }}y - k = m\left( {x - h} \right).$$

Let this line cut the $$x$$-axis and $$y$$-axis at $$P$$ and $$Q.$$
Then $$P \equiv \left( {h - \frac{k}{m},\,0} \right){\text{ and }}Q \equiv \left( {0,\,k - mh} \right).$$
Let $$S$$ be the area of $$\Delta OPQ,$$ then
$$\eqalign{
& S = \frac{1}{2}OP \times OQ \cr
& \Rightarrow S = \frac{1}{2}\left( {h - \frac{k}{m}} \right)\left( {k - mh} \right) \cr
& \Rightarrow S = \frac{1}{2}\frac{{\left( {mh - k} \right)\left( {k - mh} \right)}}{m} \cr
& \Rightarrow 2mS = hkm - {k^2} - {h^2}{m^2} + khm \cr
& \Rightarrow {h^2}{m^2} - 2\left( {hk - S} \right)m + {k^2} = 0 \cr} $$
Since, $$m$$ is real,
$$\therefore $$ its discriminant $$D \geqslant 0$$
$$\eqalign{
& \therefore \,4{\left( {hk - S} \right)^2} - 4{h^2}{k^2} \geqslant 0 \cr
& \Rightarrow S - 2hk \geqslant 0 \cr
& \Rightarrow S \geqslant 2hk \cr} $$
Hence, minimum value of $$S$$ is $$2hk$$ square units.