Question

Let $$\left( {h,\,k} \right)$$  be a fixed point where $$h > 0,\,k > 0.$$    A straight line passing through this point cuts the positive direction of the coordinate axes at the points $$P$$ and $$Q.$$ Then the minimum area of the $$\Delta OPQ.\,O$$   being the origin, is :

A. $$4hk$$  square units
B. $$2hk$$  square units  
C. $$3hk$$  square units
D. None of these
Answer :   $$2hk$$  square units
Solution :
Let the equation of any line passing through $$A\left( {h,\,k} \right){\text{ be }}y - k = m\left( {x - h} \right).$$
Straight Lines mcq solution image
Let this line cut the $$x$$-axis and $$y$$-axis at $$P$$ and $$Q.$$
Then $$P \equiv \left( {h - \frac{k}{m},\,0} \right){\text{ and }}Q \equiv \left( {0,\,k - mh} \right).$$
Let $$S$$ be the area of $$\Delta OPQ,$$   then
$$\eqalign{ & S = \frac{1}{2}OP \times OQ \cr & \Rightarrow S = \frac{1}{2}\left( {h - \frac{k}{m}} \right)\left( {k - mh} \right) \cr & \Rightarrow S = \frac{1}{2}\frac{{\left( {mh - k} \right)\left( {k - mh} \right)}}{m} \cr & \Rightarrow 2mS = hkm - {k^2} - {h^2}{m^2} + khm \cr & \Rightarrow {h^2}{m^2} - 2\left( {hk - S} \right)m + {k^2} = 0 \cr} $$
Since, $$m$$ is real,
$$\therefore $$  its discriminant $$D \geqslant 0$$
$$\eqalign{ & \therefore \,4{\left( {hk - S} \right)^2} - 4{h^2}{k^2} \geqslant 0 \cr & \Rightarrow S - 2hk \geqslant 0 \cr & \Rightarrow S \geqslant 2hk \cr} $$
Hence, minimum value of $$S$$ is $$2hk$$  square units.

Releted MCQ Question on
Geometry >> Straight Lines

Releted Question 1

The points $$\left( { - a, - b} \right),\left( {0,\,0} \right),\left( {a,\,b} \right)$$     and $$\left( {{a^2},\,ab} \right)$$  are :

A. Collinear
B. Vertices of a parallelogram
C. Vertices of a rectangle
D. None of these
Releted Question 2

The point (4, 1) undergoes the following three transformations successively.
(i) Reflection about the line $$y =x.$$
(ii) Translation through a distance 2 units along the positive direction of $$x$$-axis.
(iii) Rotation through an angle $$\frac{p}{4}$$ about the origin in the counter clockwise direction.
Then the final position of the point is given by the coordinates.

A. $$\left( {\frac{1}{{\sqrt 2 }},\,\frac{7}{{\sqrt 2 }}} \right)$$
B. $$\left( { - \sqrt 2 ,\,7\sqrt 2 } \right)$$
C. $$\left( { - \frac{1}{{\sqrt 2 }},\,\frac{7}{{\sqrt 2 }}} \right)$$
D. $$\left( {\sqrt 2 ,\,7\sqrt 2 } \right)$$
Releted Question 3

The straight lines $$x + y= 0, \,3x + y-4=0,\,x+ 3y-4=0$$         form a triangle which is-

A. isosceles
B. equilateral
C. right angled
D. none of these
Releted Question 4

If $$P = \left( {1,\,0} \right),\,Q = \left( { - 1,\,0} \right)$$     and $$R = \left( {2,\,0} \right)$$  are three given points, then locus of the point $$S$$ satisfying the relation $$S{Q^2} + S{R^2} = 2S{P^2},$$    is-

A. a straight line parallel to $$x$$-axis
B. a circle passing through the origin
C. a circle with the centre at the origin
D. a straight line parallel to $$y$$-axis

Practice More Releted MCQ Question on
Straight Lines


Practice More MCQ Question on Maths Section