Question

Let $$g\left( x \right) = 1 + x - \left[ x \right]$$     and \[f\left( x \right)\left\{ {\begin{array}{*{20}{c}} { - 1,}\\ {0,}\\ {1,} \end{array}} \right.\,\begin{array}{*{20}{c}} {x < 0}\\ {x = 0}\\ {x > 0} \end{array}.\]     Then for all $$x,f\left( {g\left( x \right)} \right)$$   is equal to

A. $$x$$
B. 1  
C. $$f\left( x \right)$$
D. $$g\left( x \right)$$
Answer :   1
Solution :
$$g\left( x \right) = 1 + x - \left[ x \right];$$
\[f\left( x \right)\left\{ {\begin{array}{*{20}{c}} { - 1,}\\ {0,}\\ {1,} \end{array}} \right.\,\begin{array}{*{20}{c}} {x < 0}\\ {x = 0}\\ {x > 0} \end{array}\]
For integral values of $$x;g\left( x \right) = 1$$
For $$x < 0;$$  (but not integral value) $$x - \left[ x \right] > 0 \Rightarrow g\left( x \right) > 1$$
For $$x > 0;$$  (but not integral value) $$x - \left[ x \right] > 0 \Rightarrow g\left( x \right) > 1$$
$$\therefore g\left( x \right) \geqslant 1,\forall x\,\therefore f\left( {g\left( x \right)} \right) = 1\forall x$$

Releted MCQ Question on
Calculus >> Function

Releted Question 1

Let $$R$$ be the set of real numbers. If $$f:R \to R$$   is a function defined by $$f\left( x \right) = {x^2},$$   then $$f$$ is:

A. Injective but not surjective
B. Surjective but not injective
C. Bijective
D. None of these.
Releted Question 2

The entire graphs of the equation $$y = {x^2} + kx - x + 9$$     is strictly above the $$x$$-axis if and only if

A. $$k < 7$$
B. $$ - 5 < k < 7$$
C. $$k > - 5$$
D. None of these.
Releted Question 3

Let $$f\left( x \right) = \left| {x - 1} \right|.$$    Then

A. $$f\left( {{x^2}} \right) = {\left( {f\left( x \right)} \right)^2}$$
B. $$f\left( {x + y} \right) = f\left( x \right) + f\left( y \right)$$
C. $$f\left( {\left| x \right|} \right) = \left| {f\left( x \right)} \right|$$
D. None of these
Releted Question 4

If $$x$$ satisfies $$\left| {x - 1} \right| + \left| {x - 2} \right| + \left| {x - 3} \right| \geqslant 6,$$       then

A. $$0 \leqslant x \leqslant 4$$
B. $$x \leqslant - 2\,{\text{or}}\,x \geqslant 4$$
C. $$x \leqslant 0\,{\text{or}}\,x \geqslant 4$$
D. None of these

Practice More Releted MCQ Question on
Function


Practice More MCQ Question on Maths Section