Question
Let $$f\left( z \right) = \sin \,z$$ and $$g\left( z \right) = \cos \,z.$$ If $$*$$ denotes a composition of functions, then the value of $$\left( {f + ig} \right)*\left( {f - ig} \right)\left( z \right)$$ is:
A.
$$i{e^{ - {e^{ - iz}}}}$$
B.
$$i{e^{ - {e^{iz}}}}$$
C.
$$ - i{e^{ - {e^{ - iz}}}}$$
D.
none of these
Answer :
$$i{e^{ - {e^{iz}}}}$$
Solution :
$$\eqalign{
& \left( {f - ig} \right)\left( z \right) \cr
& = f\left( z \right) - ig\left( z \right) \cr
& = \sin \,z - i\,\cos \,z \cr
& = - i\left( {\cos \,z + i\,\sin \,z} \right) \cr
& = - i{e^{iz}} = \theta \,\,\left( {{\text{say}}} \right) \cr
& {\text{Now, }}\left( {f + ig} \right)*\left( {f - ig} \right)\left( z \right) \cr
& = \left( {f + ig} \right)\left( {f - ig} \right)\left( z \right) \cr
& = \left( {f + ig} \right)\left( \theta \right) \cr
& = f\left( \theta \right) + ig\left( \theta \right) \cr
& = \sin \,\theta + i\,\cos \,\theta \cr
& = i\left( {\cos \,\theta - i\,\sin \,\theta } \right) \cr
& = i{e^{ - i\theta }} \cr
& = i{e^{ - i\left( { - i{e^{iz}}} \right)}} \cr
& = i{e^{ - {e^{iz}}}} \cr} $$