Question

Let $$f\left( z \right) = \sin \,z$$   and $$g\left( z \right) = \cos \,z.$$   If $$*$$ denotes a composition of functions, then the value of $$\left( {f + ig} \right)*\left( {f - ig} \right)\left( z \right)$$    is:

A. $$i{e^{ - {e^{ - iz}}}}$$
B. $$i{e^{ - {e^{iz}}}}$$  
C. $$ - i{e^{ - {e^{ - iz}}}}$$
D. none of these
Answer :   $$i{e^{ - {e^{iz}}}}$$
Solution :
$$\eqalign{ & \left( {f - ig} \right)\left( z \right) \cr & = f\left( z \right) - ig\left( z \right) \cr & = \sin \,z - i\,\cos \,z \cr & = - i\left( {\cos \,z + i\,\sin \,z} \right) \cr & = - i{e^{iz}} = \theta \,\,\left( {{\text{say}}} \right) \cr & {\text{Now, }}\left( {f + ig} \right)*\left( {f - ig} \right)\left( z \right) \cr & = \left( {f + ig} \right)\left( {f - ig} \right)\left( z \right) \cr & = \left( {f + ig} \right)\left( \theta \right) \cr & = f\left( \theta \right) + ig\left( \theta \right) \cr & = \sin \,\theta + i\,\cos \,\theta \cr & = i\left( {\cos \,\theta - i\,\sin \,\theta } \right) \cr & = i{e^{ - i\theta }} \cr & = i{e^{ - i\left( { - i{e^{iz}}} \right)}} \cr & = i{e^{ - {e^{iz}}}} \cr} $$

Releted MCQ Question on
Calculus >> Sets and Relations

Releted Question 1

If $$X$$ and $$Y$$ are two sets, then $$X \cap {\left( {X \cup Y} \right)^c}$$   equals.

A. $$X$$
B. $$Y$$
C. $$\phi $$
D. None of these
Releted Question 2

The expression $$\frac{{12}}{{3 + \sqrt 5 + 2\sqrt 2 }}$$    is equal to

A. $$1 - \sqrt 5 + \sqrt 2 + \sqrt {10} $$
B. $$1 + \sqrt 5 + \sqrt 2 - \sqrt {10} $$
C. $$1 + \sqrt 5 - \sqrt 2 + \sqrt {10} $$
D. $$1 - \sqrt 5 - \sqrt 2 + \sqrt {10} $$
Releted Question 3

If $${x_1},{x_2},.....,{x_n}$$    are any real numbers and $$n$$ is any positive integer, then

A. $$n\sum\limits_{i = 1}^n {{x_i}^2 < {{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
B. $$\sum\limits_{i = 1}^n {{x_i}^2 \geqslant {{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
C. $$\sum\limits_{i = 1}^n {{x_i}^2 \geqslant n{{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
D. none of these
Releted Question 4

Let $$S$$ = {1, 2, 3, 4}. The total number of unordered pairs of disjoint subsets of $$S$$ is equal to

A. 25
B. 34
C. 42
D. 41

Practice More Releted MCQ Question on
Sets and Relations


Practice More MCQ Question on Maths Section