Let $$f\left( {x + y} \right) = f\left( x \right) + f\left( y \right)$$ and $$f\left( x \right) = {x^2}g\left( x \right)$$ for all $$x,\,y\, \in \,R,$$ where $$g\left( x \right)$$ is continuous function. Then $$f'\left( x \right)$$ is equal to :
A.
$$g'\left( x \right)$$
B.
$$g\left( 0 \right)$$
C.
$$g\left( 0 \right) + g'\left( x \right)$$
D.
$$0$$
Answer :
$$0$$
Solution :
$$\eqalign{
& {\text{We have }}f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {x + h} \right) - \left( x \right)}}{h} \cr
& = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( x \right) + f\left( h \right) - f\left( x \right)}}{h} \cr
& = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( h \right)}}{h} \cr
& = \mathop {\lim }\limits_{h \to 0} \frac{{{h^2}g\left( h \right)}}{h} \cr
& = 0.g\left( 0 \right) \cr
& = 0 \cr
& \left[ {\because \,g{\text{ is continuous therefore }}\mathop {\lim }\limits_{h \to 0} g\left( h \right) = g\left( 0 \right)} \right] \cr} $$
Releted MCQ Question on Calculus >> Continuity
Releted Question 1
For a real number $$y,$$ let $$\left[ y \right]$$ denotes the greatest integer less
than or equal to $$y:$$ Then the function $$f\left( x \right) = \frac{{\tan \left( {\pi \left[ {x - \pi } \right]} \right)}}{{1 + {{\left[ x \right]}^2}}}$$ is-
A.
discontinuous at some $$x$$
B.
continuous at all $$x,$$ but the derivative $$f'\left( x \right)$$ does not exist for some $$x$$
C.
$$f'\left( x \right)$$ exists for all $$x,$$ but the second derivative $$f'\left( x \right)$$ does not exist for some $$x$$
The function $$f\left( x \right) = \frac{{\ln \left( {1 + ax} \right) - \ln \left( {1 - bx} \right)}}{x}$$ is not defined at $$x = 0.$$ The value which should be assigned to $$f$$ at $$x = 0,$$ so that it is continuous at $$x =0,$$ is-
The function $$f\left( x \right) = \left[ x \right]\cos \left( {\frac{{2x - 1}}{2}} \right)\pi ,\,\left[ . \right]$$ denotes the greatest integer function, is discontinuous at-
The function $$f\left( x \right) = {\left[ x \right]^2} - \left[ {{x^2}} \right]$$ (where $$\left[ y \right]$$ is the greatest integer less than or equal to $$y$$ ), is discontinuous at-