Question

Let $$f\left( x \right) = \frac{x}{{1 - x}}$$   and $$'a'$$  be a real number. If $${x_0} = a,\,{x_1} = f\left( {{x_0}} \right),\,{x_2} = f\left( {{x_1}} \right),\,{x_3} = f\left( {{x_2}} \right).....$$           If $${x_{2009}} = 1,$$   then the value of $$a$$ is :

A. $$0$$
B. $$\frac{{2009}}{{2010}}$$
C. $$\frac{1}{{2009}}$$
D. $$\frac{1}{{2010}}$$  
Answer :   $$\frac{1}{{2010}}$$
Solution :
$$\eqalign{ & {x_0} = a,\,{x_1} = f\left( x \right) = \frac{{{x_0}}}{{1 - {x_0}}} = \frac{a}{{1 - a}}; \cr & {x_2} = f\left( {{x_1}} \right) = \frac{{{x_1}}}{{1 - {x_1}}} = \frac{{\frac{a}{{1 - a}}}}{{1 - \frac{a}{{1 - a}}}} = \frac{a}{{1 - 2a}} \cr & \therefore\, {x_{2009}} = \frac{a}{{1 - 2009\,a}} = 1 \cr & \Rightarrow 1 - 2009\,a = a \cr & \Rightarrow a = \frac{1}{{2010}} \cr} $$

Releted MCQ Question on
Calculus >> Function

Releted Question 1

Let $$R$$ be the set of real numbers. If $$f:R \to R$$   is a function defined by $$f\left( x \right) = {x^2},$$   then $$f$$ is:

A. Injective but not surjective
B. Surjective but not injective
C. Bijective
D. None of these.
Releted Question 2

The entire graphs of the equation $$y = {x^2} + kx - x + 9$$     is strictly above the $$x$$-axis if and only if

A. $$k < 7$$
B. $$ - 5 < k < 7$$
C. $$k > - 5$$
D. None of these.
Releted Question 3

Let $$f\left( x \right) = \left| {x - 1} \right|.$$    Then

A. $$f\left( {{x^2}} \right) = {\left( {f\left( x \right)} \right)^2}$$
B. $$f\left( {x + y} \right) = f\left( x \right) + f\left( y \right)$$
C. $$f\left( {\left| x \right|} \right) = \left| {f\left( x \right)} \right|$$
D. None of these
Releted Question 4

If $$x$$ satisfies $$\left| {x - 1} \right| + \left| {x - 2} \right| + \left| {x - 3} \right| \geqslant 6,$$       then

A. $$0 \leqslant x \leqslant 4$$
B. $$x \leqslant - 2\,{\text{or}}\,x \geqslant 4$$
C. $$x \leqslant 0\,{\text{or}}\,x \geqslant 4$$
D. None of these

Practice More Releted MCQ Question on
Function


Practice More MCQ Question on Maths Section