Question

Let $$f\left( x \right) = \frac{x}{{1 + {x^2}}}$$   and $$g\left( x \right) = \frac{{{e^{ - x}}}}{{1 + \left[ x \right]}},$$    where $$\left[ x \right]$$ is the greatest integer less than or equal to $$x.$$ Then,

A. $$D\left( {f + g} \right) = R - \left[ { - 2,\,0} \right)$$
B. $$D\left( {f + g} \right) = R - \left[ { - 1,\,0} \right)$$
C. $$R\left( f \right) \cap R\left( g \right) = \left[ { - 2,\,\frac{1}{2}} \right]$$
D. None of these  
Answer :   None of these
Solution :
$$\eqalign{ & D\left( f \right) = R;\,D\left( g \right) = R - \left[ { - 1,\,0} \right) \cr & \therefore \,\,D\left( {f + g} \right) \cr & = D\left( f \right) \cap D\left( g \right) \cr & = R \cap \left( {R - \left[ { - 1,\,0} \right)} \right) \cr & = R \cap \left[ { - 1,\,0} \right) \cr & R\left( f \right) = \left[ { - \frac{1}{2},\,\frac{1}{2}} \right];\,\,R\left( g \right) = R - \left\{ 0 \right\} \cr & \therefore \,\,R\left( f \right) \cap R\left( g \right) \cr & = \left[ { - \frac{1}{2},\,\frac{1}{2}} \right] \cap \left( {R - \left\{ 0 \right\}} \right) \cr & = \left[ { - \frac{1}{2},\,\frac{1}{2}} \right] - \left\{ 0 \right\} \cr} $$

Releted MCQ Question on
Calculus >> Sets and Relations

Releted Question 1

If $$X$$ and $$Y$$ are two sets, then $$X \cap {\left( {X \cup Y} \right)^c}$$   equals.

A. $$X$$
B. $$Y$$
C. $$\phi $$
D. None of these
Releted Question 2

The expression $$\frac{{12}}{{3 + \sqrt 5 + 2\sqrt 2 }}$$    is equal to

A. $$1 - \sqrt 5 + \sqrt 2 + \sqrt {10} $$
B. $$1 + \sqrt 5 + \sqrt 2 - \sqrt {10} $$
C. $$1 + \sqrt 5 - \sqrt 2 + \sqrt {10} $$
D. $$1 - \sqrt 5 - \sqrt 2 + \sqrt {10} $$
Releted Question 3

If $${x_1},{x_2},.....,{x_n}$$    are any real numbers and $$n$$ is any positive integer, then

A. $$n\sum\limits_{i = 1}^n {{x_i}^2 < {{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
B. $$\sum\limits_{i = 1}^n {{x_i}^2 \geqslant {{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
C. $$\sum\limits_{i = 1}^n {{x_i}^2 \geqslant n{{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
D. none of these
Releted Question 4

Let $$S$$ = {1, 2, 3, 4}. The total number of unordered pairs of disjoint subsets of $$S$$ is equal to

A. 25
B. 34
C. 42
D. 41

Practice More Releted MCQ Question on
Sets and Relations


Practice More MCQ Question on Maths Section