Question

Let $$f\left( x \right) = x - \left[ x \right]$$    for $$x\, \in \,R,$$   where $$\left[ x \right] = $$  the greatest integer $$ \leqslant x.$$  Then $$\int_{ - 2}^2 {f\left( x \right)dx} $$   is :

A. $$4$$
B. $$2$$  
C. $$0$$
D. $$1$$
Answer :   $$2$$
Solution :
$$\eqalign{ & I = \int_{ - 2}^2 {x\,dx} - \int_{ - 2}^2 {\left[ x \right]dx} \cr & = 0 - \left\{ {\int_{ - 2}^{ - 1} {\left[ x \right]dx + \int_{ - 1}^0 {\left[ x \right]dx} + \int_0^1 {\left[ x \right]dx} + \int_1^2 {\left[ x \right]dx} } } \right\} \cr & = - \int_{ - 2}^{ - 1} { - 2\,dx} - \int_{ - 1}^0 { - 1\,dx} - \int_0^1 {0\,dx} - \int_1^2 {1\,dx} \cr & = 2\left| x \right|_{ - 2}^{ - 1} + \left| x \right|_{ - 1}^0 - 0 - \left| x \right|_1^2 \cr & = 2\left( { - 1 + 2} \right) + \left( {0 + 1} \right) - \left( {2 - 1} \right) \cr & = 2 \cr} $$

Releted MCQ Question on
Calculus >> Application of Integration

Releted Question 1

The area bounded by the curves $$y = f\left( x \right),$$   the $$x$$-axis and the ordinates $$x = 1$$  and $$x = b$$  is $$\left( {b - 1} \right)\sin \left( {3b + 4} \right).$$     Then $$f\left( x \right)$$  is-

A. $$\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
B. $$\sin \,\left( {3x + 4} \right)$$
C. $$\sin \,\left( {3x + 4} \right) + 3\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
D. none of these
Releted Question 2

The area bounded by the curves $$y = \left| x \right| - 1$$   and $$y = - \left| x \right| + 1$$   is-

A. $$1$$
B. $$2$$
C. $$2\sqrt 2 $$
D. $$4$$
Releted Question 3

The area bounded by the curves $$y = \sqrt x ,\,2y + 3 = x$$    and $$x$$-axis in the 1st quadrant is-

A. $$9$$
B. $$\frac{{27}}{4}$$
C. $$36$$
D. $$18$$
Releted Question 4

The area enclosed between the curves $$y = a{x^2}$$   and $$x = a{y^2}\left( {a > 0} \right)$$    is 1 sq. unit, then the value of $$a$$ is-

A. $$\frac{1}{{\sqrt 3 }}$$
B. $$\frac{1}{2}$$
C. $$1$$
D. $$\frac{1}{3}$$

Practice More Releted MCQ Question on
Application of Integration


Practice More MCQ Question on Maths Section