Question

Let $$f\left( x \right) = \sin \,x,\,g\left( x \right) = \left[ {x + 1} \right]$$       and $$g\left\{ {f\left( x \right) = h\left( x \right)} \right\},$$    where $$\left[ . \right]$$ is the greatest integer function. Then $$h'\left( {\frac{\pi }{2}} \right)$$  is :

A. nonexistent  
B. 1
C. $$-1$$
D. none of these
Answer :   nonexistent
Solution :
$$\eqalign{ & h\left( x \right) = g\left\{ {f\left( x \right)} \right\} = \left[ {f\left( x \right) + 1} \right] = \left[ {\sin \,x + 1} \right] \cr & h'\left( {\frac{\pi }{2} + 0} \right) = \mathop {\lim }\limits_{h \to 0} \frac{{\left[ {\sin \left( {\frac{\pi }{2} + h} \right) + 1} \right] - \left[ {\sin \frac{\pi }{2} + 1} \right]}}{h} \cr & = \mathop {\lim }\limits_{h \to 0} \frac{{\left[ {\cos \,h + 1} \right] - \left[ 2 \right]}}{h} \cr & = \mathop {\lim }\limits_{h \to 0} \frac{{1 - 2}}{h} \cr & = \mathop {\lim }\limits_{h \to 0} \frac{{ - 1}}{h} = - \infty \cr & h'\left( {\frac{\pi }{2} - 0} \right) = \mathop {\lim }\limits_{h \to 0} \frac{{\left[ {\sin \left( {\frac{\pi }{2} - h} \right) + 1} \right] - \left[ {\sin \frac{\pi }{2} + 1} \right]}}{{ - h}} \cr & = \mathop {\lim }\limits_{h \to 0} \frac{{\left[ {\cos \,h + 1} \right] - \left[ 2 \right]}}{{ - h}} \cr & = \mathop {\lim }\limits_{h \to 0} \frac{1}{h} = + \infty \cr} $$

Releted MCQ Question on
Calculus >> Differentiability and Differentiation

Releted Question 1

There exist a function $$f\left( x \right),$$  satisfying $$f\left( 0 \right) = 1,\,f'\left( 0 \right) = - 1,\,f\left( x \right) > 0$$       for all $$x,$$ and-

A. $$f''\left( x \right) > 0$$   for all $$x$$
B. $$ - 1 < f''\left( x \right) < 0$$    for all $$x$$
C. $$ - 2 \leqslant f''\left( x \right) \leqslant - 1$$    for all $$x$$
D. $$f''\left( x \right) < - 2$$   for all $$x$$
Releted Question 2

If $$f\left( a \right) = 2,\,f'\left( a \right) = 1,\,g\left( a \right) = - 1,\,g'\left( a \right) = 2,$$         then the value of $$\mathop {\lim }\limits_{x \to a} \frac{{g\left( x \right)f\left( a \right) - g\left( a \right)f\left( x \right)}}{{x - a}}$$      is-

A. $$-5$$
B. $$\frac{1}{5}$$
C. $$5$$
D. none of these
Releted Question 3

Let $$f:R \to R$$   be a differentiable function and $$f\left( 1 \right) = 4.$$   Then the value of $$\mathop {\lim }\limits_{x \to 1} \int\limits_4^{f\left( x \right)} {\frac{{2t}}{{x - 1}}} dt$$     is-

A. $$8f'\left( 1 \right)$$
B. $$4f'\left( 1 \right)$$
C. $$2f'\left( 1 \right)$$
D. $$f'\left( 1 \right)$$
Releted Question 4

Let [.] denote the greatest integer function and $$f\left( x \right) = \left[ {{{\tan }^2}x} \right],$$    then:

A. $$\mathop {\lim }\limits_{x \to 0} f\left( x \right)$$     does not exist
B. $$f\left( x \right)$$  is continuous at $$x = 0$$
C. $$f\left( x \right)$$  is not differentiable at $$x =0$$
D. $$f'\left( 0 \right) = 1$$

Practice More Releted MCQ Question on
Differentiability and Differentiation


Practice More MCQ Question on Maths Section