Question

Let $$f\left( x \right) = \sin \,x$$   and $$g\left( x \right) = {\log _e}\left| x \right|.$$    If the ranges of the composition functions fog and gof are $${R_1}$$ and $${R_2},$$ respectively, then :

A. $${R_1} = \left\{ {u: - 1 \leqslant u < 1} \right\},\,{R_2} = \left\{ {v: - \infty < v < 0} \right\}$$
B. $${R_1} = \left\{ {u: - \infty < u < 0} \right\},\,{R_2} = \left\{ {v: - \infty < v < 0} \right\}$$
C. $${R_1} = \left\{ {u: - 1 < u < 1} \right\},\,{R_2} = \left\{ {v: - \infty < v < 0} \right\}$$
D. $${R_1} = \left\{ {u: - 1 \leqslant u \leqslant 1} \right\},\,{R_2} = \left\{ {v: - \infty < v \leqslant 0} \right\}$$  
Answer :   $${R_1} = \left\{ {u: - 1 \leqslant u \leqslant 1} \right\},\,{R_2} = \left\{ {v: - \infty < v \leqslant 0} \right\}$$
Solution :
$$\eqalign{ & {\text{We have fog}}\left( x \right) = f\left( {g\left( x \right)} \right) = \sin \left( {{{\log }_e}\left| x \right|} \right) \cr & {\log _e}\left| x \right|\,{\text{has range }}R,{\text{ for which}}\,\sin \left( {{{\log }_e}\left| x \right|} \right) \in \left[ { - 1,\,1} \right] \cr & {\text{Therefore, }}{R_1} = \left\{ {u: - 1 \leqslant u \leqslant 1} \right\} \cr & {\text{Also, gof}}\left( x \right) = g\left( {f\left( x \right)} \right) = {\log _e}\left| {\sin \,x} \right| \cr & \because \,\,0 \leqslant \left| {\sin \,x} \right| \leqslant 1{\text{ }} \cr & {\text{or }} - \infty < {\log _e}\left| {\sin \,x} \right| \leqslant 0 \cr & {\text{or }}{R_2} = \left\{ {v: - \infty < v \leqslant 0} \right\} \cr} $$

Releted MCQ Question on
Calculus >> Sets and Relations

Releted Question 1

If $$X$$ and $$Y$$ are two sets, then $$X \cap {\left( {X \cup Y} \right)^c}$$   equals.

A. $$X$$
B. $$Y$$
C. $$\phi $$
D. None of these
Releted Question 2

The expression $$\frac{{12}}{{3 + \sqrt 5 + 2\sqrt 2 }}$$    is equal to

A. $$1 - \sqrt 5 + \sqrt 2 + \sqrt {10} $$
B. $$1 + \sqrt 5 + \sqrt 2 - \sqrt {10} $$
C. $$1 + \sqrt 5 - \sqrt 2 + \sqrt {10} $$
D. $$1 - \sqrt 5 - \sqrt 2 + \sqrt {10} $$
Releted Question 3

If $${x_1},{x_2},.....,{x_n}$$    are any real numbers and $$n$$ is any positive integer, then

A. $$n\sum\limits_{i = 1}^n {{x_i}^2 < {{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
B. $$\sum\limits_{i = 1}^n {{x_i}^2 \geqslant {{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
C. $$\sum\limits_{i = 1}^n {{x_i}^2 \geqslant n{{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
D. none of these
Releted Question 4

Let $$S$$ = {1, 2, 3, 4}. The total number of unordered pairs of disjoint subsets of $$S$$ is equal to

A. 25
B. 34
C. 42
D. 41

Practice More Releted MCQ Question on
Sets and Relations


Practice More MCQ Question on Maths Section