Question

Let $$f\left( x \right) = $$   maximum $$\left\{ {x + \left| x \right|,\,x - \left[ x \right]} \right\},$$     where $$\left[ x \right] = $$  the greatest integer $$ \leqslant x.$$  Then $$\int_{ - 2}^2 {f\left( x \right)dx} $$    is equal to :

A. 3
B. 2
C. 1
D. none of these  
Answer :   none of these
Solution :
$$\left| x \right| \geqslant - \left[ x \right]$$    for all positive $$x,$$ and $$\left| x \right| \leqslant - \left[ x \right]$$    for all negative $$x.$$
$$\eqalign{ & \therefore \int_{ - 2}^2 {f\left( x \right)dx} = \int_{ - 2}^0 {\left( {x - \left[ x \right]} \right)dx} + \int_0^2 {\left( {x + \left| x \right|} \right)dx} \cr & = \int_{ - 2}^0 {x\,dx} - \int_{ - 2}^0 {\left[ x \right]dx} + \int_0^2 {2x\,dx} \cr & = \left[ {\frac{{{x^2}}}{2}} \right]_{ - 2}^0 - \left\{ {\int_{ - 2}^{ - 1} {\left[ x \right]dx} + \int_{ - 1}^0 {\left[ x \right]dx} } \right\} + \left[ {{x^2}} \right]_0^2 \cr & = 0 - 2 - \int_{ - 2}^{ - 1} { - 2\,dx} - \int_{ - 1}^0 { - 1\,dx + 4} \cr & = - 2 + 2\left[ x \right]_{ - 2}^{ - 1} + \left[ x \right]_{ - 1}^0 + 4 \cr & = - 2 + 2\left( { - 1 + 2} \right) + \left( {0 + 1} \right) + 4 \cr & = 5 \cr} $$

Releted MCQ Question on
Calculus >> Application of Integration

Releted Question 1

The area bounded by the curves $$y = f\left( x \right),$$   the $$x$$-axis and the ordinates $$x = 1$$  and $$x = b$$  is $$\left( {b - 1} \right)\sin \left( {3b + 4} \right).$$     Then $$f\left( x \right)$$  is-

A. $$\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
B. $$\sin \,\left( {3x + 4} \right)$$
C. $$\sin \,\left( {3x + 4} \right) + 3\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
D. none of these
Releted Question 2

The area bounded by the curves $$y = \left| x \right| - 1$$   and $$y = - \left| x \right| + 1$$   is-

A. $$1$$
B. $$2$$
C. $$2\sqrt 2 $$
D. $$4$$
Releted Question 3

The area bounded by the curves $$y = \sqrt x ,\,2y + 3 = x$$    and $$x$$-axis in the 1st quadrant is-

A. $$9$$
B. $$\frac{{27}}{4}$$
C. $$36$$
D. $$18$$
Releted Question 4

The area enclosed between the curves $$y = a{x^2}$$   and $$x = a{y^2}\left( {a > 0} \right)$$    is 1 sq. unit, then the value of $$a$$ is-

A. $$\frac{1}{{\sqrt 3 }}$$
B. $$\frac{1}{2}$$
C. $$1$$
D. $$\frac{1}{3}$$

Practice More Releted MCQ Question on
Application of Integration


Practice More MCQ Question on Maths Section