Question

Let $$f\left( x \right) = \log \left| {x - 1} \right|,\,x \ne 1.$$     The value of $$f'\left( {\frac{1}{2}} \right) = ?$$

A. is $$ - 2$$  
B. is $$2$$
C. does not exist
D. none of these
Answer :   is $$ - 2$$
Solution :
$$\eqalign{ & {\text{RH derivative}} = \mathop {\lim }\limits_{h \to 0} \frac{{\log \left| {\frac{1}{2} + h - 1} \right| - \log \left| {\frac{1}{2} - 1} \right|}}{h} \cr & = \mathop {\lim }\limits_{h \to 0} \frac{{\log \left| {h - \frac{1}{2}} \right| - \log \frac{1}{2}}}{h} \cr & = \mathop {\lim }\limits_{h \to 0} \frac{{\log \left( {\frac{1}{2} - h} \right) + \log \,2}}{h} \cr & = \mathop {\lim }\limits_{h \to 0} \frac{{\frac{1}{{\frac{1}{2} - h}}\left( { - 1} \right) + 0}}{1} \cr & = - 2 \cr & {\text{LH derivative}} = \mathop {\lim }\limits_{h \to 0} \frac{{\log \left| {\frac{1}{2} - h - 1} \right| - \log \left| {\frac{1}{2} - 1} \right|}}{{ - h}} \cr & = \mathop {\lim }\limits_{h \to 0} \frac{{\log \left( {\frac{1}{2} + h} \right) - \log \frac{1}{2}}}{{ - h}} \cr & = \mathop {\lim }\limits_{h \to 0} \frac{{\frac{1}{{\frac{1}{2} + h}} - 0}}{{ - 1}} \cr & = - 2 \cr & {\bf{Alternate\,method :}} \cr & {\text{Around}}\,\,x = \frac{1}{2},\,f\left( x \right) = \log \left( {1 - x} \right) \cr & {\text{So, }}f'\left( x \right) = \frac{{ - 1}}{{1 - x}} \cr & \therefore f'\left( {\frac{1}{2}} \right) = \frac{{ - 1}}{{1 - \frac{1}{2}}} = - 2 \cr} $$

Releted MCQ Question on
Calculus >> Differentiability and Differentiation

Releted Question 1

There exist a function $$f\left( x \right),$$  satisfying $$f\left( 0 \right) = 1,\,f'\left( 0 \right) = - 1,\,f\left( x \right) > 0$$       for all $$x,$$ and-

A. $$f''\left( x \right) > 0$$   for all $$x$$
B. $$ - 1 < f''\left( x \right) < 0$$    for all $$x$$
C. $$ - 2 \leqslant f''\left( x \right) \leqslant - 1$$    for all $$x$$
D. $$f''\left( x \right) < - 2$$   for all $$x$$
Releted Question 2

If $$f\left( a \right) = 2,\,f'\left( a \right) = 1,\,g\left( a \right) = - 1,\,g'\left( a \right) = 2,$$         then the value of $$\mathop {\lim }\limits_{x \to a} \frac{{g\left( x \right)f\left( a \right) - g\left( a \right)f\left( x \right)}}{{x - a}}$$      is-

A. $$-5$$
B. $$\frac{1}{5}$$
C. $$5$$
D. none of these
Releted Question 3

Let $$f:R \to R$$   be a differentiable function and $$f\left( 1 \right) = 4.$$   Then the value of $$\mathop {\lim }\limits_{x \to 1} \int\limits_4^{f\left( x \right)} {\frac{{2t}}{{x - 1}}} dt$$     is-

A. $$8f'\left( 1 \right)$$
B. $$4f'\left( 1 \right)$$
C. $$2f'\left( 1 \right)$$
D. $$f'\left( 1 \right)$$
Releted Question 4

Let [.] denote the greatest integer function and $$f\left( x \right) = \left[ {{{\tan }^2}x} \right],$$    then:

A. $$\mathop {\lim }\limits_{x \to 0} f\left( x \right)$$     does not exist
B. $$f\left( x \right)$$  is continuous at $$x = 0$$
C. $$f\left( x \right)$$  is not differentiable at $$x =0$$
D. $$f'\left( 0 \right) = 1$$

Practice More Releted MCQ Question on
Differentiability and Differentiation


Practice More MCQ Question on Maths Section