Question

Let $$f\left( x \right) = g\left( x \right).\frac{{{e^{\frac{1}{x}}} - {e^{ - \frac{1}{x}}}}}{{{e^{\frac{1}{x}}} + {e^{ - \frac{1}{x}}}}},$$       where $$g$$ is a continuous function then $$\mathop {\lim }\limits_{x \to 0} f\left( x \right)$$   does not exist if :

A. $$g\left( x \right)$$  is any constant function  
B. $$g\left( x \right) = x$$
C. $$g\left( x \right) = {x^2}$$
D. $$g\left( x \right) = x\,h\left( x \right),$$   where $$h\left( x \right)$$  is a polynomial
Answer :   $$g\left( x \right)$$  is any constant function
Solution :
$$\eqalign{ & \mathop {\lim }\limits_{x \to {0^ + }} \frac{{{e^{\frac{1}{x}}} - {e^{ - \frac{1}{x}}}}}{{{e^{\frac{1}{x}}} + {e^{ - \frac{1}{x}}}}} = \mathop {\lim }\limits_{x \to {0^ + }} \frac{{1 - {e^{ - \frac{2}{x}}}}}{{1 + {e^{ - \frac{2}{x}}}}} = 1 \cr & {\text{and }}\mathop {\lim }\limits_{x \to {0^ - }} \frac{{{e^{\frac{1}{x}}} - {e^{ - \frac{1}{x}}}}}{{{e^{\frac{1}{x}}} + {e^{ - \frac{1}{x}}}}} = \mathop {\lim }\limits_{x \to {0^ - }} \frac{{{e^{\frac{2}{x}}} - 1}}{{{e^{\frac{2}{x}}} + 1}} = - 1 \cr} $$
Hence, $$\mathop {\lim }\limits_{x \to 0} f\left( x \right)$$   exists if $$\mathop {\lim }\limits_{x \to 0} g\left( x \right) = 0$$
If $$g\left( x \right) = a \ne 0$$    (constant) then $$\mathop {\lim }\limits_{x \to 0 + } f\left( x \right) = a$$    and $$\mathop {\lim }\limits_{x \to 0 - } f\left( x \right) = - a$$
Thus $$\mathop {\lim }\limits_{x \to 0} f\left( x \right)$$   doesn't exist in this case.

Releted MCQ Question on
Calculus >> Continuity

Releted Question 1

For a real number $$y,$$ let $$\left[ y \right]$$ denotes the greatest integer less than or equal to $$y:$$ Then the function $$f\left( x \right) = \frac{{\tan \left( {\pi \left[ {x - \pi } \right]} \right)}}{{1 + {{\left[ x \right]}^2}}}$$     is-

A. discontinuous at some $$x$$
B. continuous at all $$x,$$ but the derivative $$f'\left( x \right)$$  does not exist for some $$x$$
C. $$f'\left( x \right)$$  exists for all $$x,$$ but the second derivative $$f'\left( x \right)$$  does not exist for some $$x$$
D. $$f'\left( x \right)$$  exists for all $$x$$
Releted Question 2

The function $$f\left( x \right) = \frac{{\ln \left( {1 + ax} \right) - \ln \left( {1 - bx} \right)}}{x}$$       is not defined at $$x = 0.$$  The value which should be assigned to $$f$$ at $$x = 0,$$  so that it is continuous at $$x =0,$$  is-

A. $$a-b$$
B. $$a+b$$
C. $$\ln a - \ln b$$
D. none of these
Releted Question 3

The function $$f\left( x \right) = \left[ x \right]\cos \left( {\frac{{2x - 1}}{2}} \right)\pi ,\,\left[ . \right]$$      denotes the greatest integer function, is discontinuous at-

A. all $$x$$
B. All integer points
C. No $$x$$
D. $$x$$ which is not an integer
Releted Question 4

The function $$f\left( x \right) = {\left[ x \right]^2} - \left[ {{x^2}} \right]$$    (where $$\left[ y \right]$$ is the greatest integer less than or equal to $$y$$ ), is discontinuous at-

A. all integers
B. all integers except 0 and 1
C. all integers except 0
D. all integers except 1

Practice More Releted MCQ Question on
Continuity


Practice More MCQ Question on Maths Section