Question
Let $$f\left( x \right) = \int {{e^x}\left( {x - 1} \right)\left( {x - 2} \right)dx} .$$
Then $$f$$ decreases in the interval :
A.
$$\left( { - \infty ,\, - 2} \right)$$
B.
$$\left( { - 2,\, - 1} \right)$$
C.
$$\left( {1,\,2} \right)$$
D.
$$\left( {2,\, + \infty } \right)$$
Answer :
$$\left( {1,\,2} \right)$$
Solution :
$$\eqalign{
& f\left( x \right) = \int {{e^x}\left( {x - 1} \right)\left( {x - 2} \right)dx} \cr
& {\text{For decreasing function, }}f'\left( x \right) < 0 \cr
& \Rightarrow {e^x}\left( {x - 1} \right)\left( {x - 2} \right) < 0 \cr
& \Rightarrow \left( {x - 1} \right)\left( {x - 2} \right) < 0 \cr
& \Rightarrow 1 < x < 2 \cr
& \therefore \,{e^x} > 0\,\forall \,x\, \in R \cr} $$